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Abstract 
In this paper, procedures for creating an effective linear model to represent surface 

spectra are presented. The model is derived by considering spectral data and the human visual 
characteristic that depends on wave lengths. Two human visual weighting functions (HVWF) 
are derived from human visual characteristic. The basis functions of the linear model for the 
surface reflectance are selected by minimizing least square error in approximating the spectral 
data weighted by the HVWF. The linear model is shown to perform better than conventional 
linear models for color constancy, the surface identification related to object recognition, and 
the characterization of a scanner and a camera. 

1 Introduction 
Recent computational models of  color vision [1-7] demonstrate that it is possible 

to achieve color constancy over some limited range of  illuminant and surface. The 
algorithm provided by Cohen [1] initially was attempted to find an efficient, low 
dimensional linear representation o f  surface reflectance (SR) and spectral power 
distribution (SPD) o f  illuminants. Efficient spectral representation is useful in many 
applications such as color reproduction system [4, 5], rendering in computer graphics, 
color constancy, and surface identification related to object recognition. 

Linear model has been developed in two main directions. First, relationship 
between the error of  reconstructed reflectance and the dimension of  basis functions 
has been observed in the linear model  [2,3,7]. Second is to analyze not only the error 
of  reconstructed reflectance but also color difference on color space for real 
applications [6,10,11 ] A linear model designed to minimize the error between original 
SR and reproduced one is inappropriate in efficient color representation because it is 
not designed to minimize color differences. Moreover, it is important to remember 
that basis functions should be derived independent of  illuminants because color 
constancy is get "an invariant" under the varying illuminants. Therefore, we try to 
consider and minimize the human visual characteristic (HVC) independent of  
illuminant to derive the basis function. In [I0],  the effectiveness of  basis functions 
considering HVC was proved. In this paper, the CIE I931 XYZ standard observer and 
CIE1976 CIEL*a*b* as HVC are investigated. 

2 L i n e a r  M o d e l  
Linear models [1-8] are used to approximate SR with a small number of  

descriptors in wavelength domain. The basis functions Rj(2) for SR are chosen to 
minimize the mean square error of  reflectance R(A): 

( I )  .ul.v r ~ R, ( ,~) -  _ ~ j  Rj d;t '  
R j= l  

J S ~ sample 
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where sample and d represent the number of  samples and basis functions respectively 
and ~ is the weight of  each basis function. If  the d-dimensional basis functions are 
chosen to approximate the SR R(2), the reflectance function is represented as: 

d 

(2) 
j=l 

The basis functions Rj that minimize the quantity in equation (1) are derived by as 
singular value decomposition (SVD) of  the matrix [9] whose columns are composed 
of  the SR of samples [1,5,6]. Let us consider SR as 31 by 1 matrix with l0 nm 
sampling wavelengths from 400 nm to 700 run. I f  mapping of  the original reflectance 
matrix, R, onto the reconstructed spectral reflectance matrix R '  is expressed by the 
projection matrix: 

R '  = R i W  = n j ( R i + R )  = ( R j R j + ) R  = e R  (3) 
where Wis 3 by 1 weigh~matrix',/~]+ is the psudoinverse of  the basis vectors and 

P is the projection matrix with entrids o f  31 by 31. The mean square error, Erefl 
between the original and an approximated spectra become: 

31 

1 ~ (IR(Aj) - R'(Aj)I-" ) = IIR- PRt[ 2 (4) 
E ~ f  - 31j=~ 

where 31 is the number of  sampling points in spectrum and 11 II represents the norm of  

vector. The linear model for illuminant has the same representation as for reflectance 
except that basis vectors derived from a set of  illuminants used. The linear 
approximation E(2) for illuminant corresponding to equation (2) is 

a 
E(2c) .~ ~ E] ( 2 ) g y ,  where Ej(2) are basis functions for illuminant set. 

j=l 

3 Color Linear Model using Human Visual Perception 
It is important that the magnitude o f  spectra errors is not always coincident 

with the amount of  color difference perceived by human eye, such as CIEXYZ or 
CIELAB: 

• a *b ,a  ,b 
< AE,,f), t h e n  (AE ab > AE ab) or (AE ab < ~E ab). (5) 

Basically, this inequivalence is due to minimization strategy, equation (1), in which 
the HVC is not considered. Human visual responses are relatively insensitive at the 
ends of visible spectrum, while they show different sensitivity characteristics in 
around the center of  visible spectrum. The color constancy, perceived by human 
visual system, for an object discounts illumination effect not for reflectance but for 
trichromatic visual response. Wandell et al. derived the basis vectors of  color data set 
by n-mode analysis to minimize the error in the predicted scanner response [6]. 
Trusell has discussed the related topic that uses principal component analysis (PCA) 
in color reproduction [5]. The target of  this section is to derive the basis functions 
considering the human visual perception for the surface reflectance set. 

3.1 The Proposed Minimization Equation 
To derive effective basis functions, the error is minimized for reflectance data 

based on human characteristic rather than SR itself : 
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X X 
samp/e sample 

where H0.) represent the product o f  reflectance R(k) and HVC, and H'(k) is an 
approximated reflectance in human visual domain and ~ is weight coefficient and 
Hi(X) are basis functions. The basis funct ions /~  for the SR are chosen to minimize 
the mean square error of  SR data H(2). I f  reflectance replaces the continuous 
function of wave length with sampled functions expressed as vectors, then the human 
visual error as in equation (4): 

E ttr = [I H - PHHll (7) 
where Pa is a projection matrix and I[ ~ represents the norm of vector. 

3.2 Human Visual Weighting Functions (HVWF) 
Two examples of  HVWF described here are found from the three spectral 

components of  color vector such as CIEXYZ or CIELAB. All spectral data are 
composed of 31 sample points ranging from 400 to 700 nm in 10-nm steps in our 
model. Human visual sensitivities are C~, i=1-3, whose entries compose of  three 
column matrix, C=[ Ct, C2, C~]. Three spectral human visual responses X 0 of  the 
surface reflectance R under the illuminant E at each sample wave length can be 
computed by matrix product X=CrER, where R and E are 31 by 31 diagonal 
matrices. Hence, each column matrix of  X is expressed as: 

X~ = R(~.j) E(Zj)[ C,(Z~), CX,~), G ( ~ ) ]  T (8) 
wherej=l-31. Suppose I"(2) as CIE 1931 Standard Observer [8], then haman visual 
response at sample wave lengths becomes in terms ofCIE XTZ values as: 

Xj = R(2s) E(2s) K T(~), (9) 
31 

w.o o a vow,or of 
j=l k - - - -  J 

- -  T observer, Ix(A j ) ,  ; ( 2  j ) ,  z (2 j )  ] - Suppose Xj the recovered human visual response 

of the reflectance R(2i), then the norm of  the difference of human response vector: 

X) -X) =E(2i) K {R(2j) - R ' (~)}  [ Tz(2~)2+ T2(2j) 2+ T,(2i)2] 'a (10) 

If we substitute the norm X) - X )  [ instead of  (R(Aj)-R'(2i)) in equations (1) and 

(7), then the basis functions can be chosen to minimize the following quantity: 

~e j~[E(2j), g. T(Av)l[. {R(~j)- R'( )Lj )}]  2 • (11) 

Using equation (I 1), we are ready to define the HVWF at sample wave lengths as: 
Hv(2~) = E(23 K [ Cz(2.~)2+ C2(24)2+ Cs(2~)2]m (12) 

Equation (12) displays the HVWF of  a general form considering the illuminant and 
HVC. Equation (I 1) can be rewritten by: 

2 

X Z[H,,(2j) R(2y)- H'(2j)] (13) 
sample j 

Besides the above HVWF, it is possible to adopt a human visual sensitivity that is 



57 

a linear space of the reflectance such as NTSC RGB or ATD space [8]. Suppose an 
illuminant with uniformed unit energy spectrum, then the HVWF that is independent 
of  illuminant is expressed by: 

Hv(24 ) = [ C,(24) 2+ Cz(24) z+ C~(24) z] ,~, j =  1,. 3 1. (1 4) 
The above H~{24)is depicted in Figure 1 and is refereed to color matching function 
(CMF) in the following sections. CMF represents characteristics that the middle 

• O r  range of visible spectrum has a high sensitivity like human bem~, s but both ends of  
visible spectrum have relatively low sensitivity. Besides the linear spaces, non-linear 
space to reflectance like LAB (CIE 1976 L*a*b*) space [8] can be considered as the 
HVC. The XYZ values Xj of  equation (9) can be transformed into LAB domain: 

L (24)= 1 16 {R(24) E(24) K T:(24)/Yn} m-16 (15) 
A(24) = 500 [ {R(24) E(24) K T,(24)/Xn} m- {R(24) E(24) K Tz(24)/Yn} m] (16) 
B(24) = 200 [ {R(24) E(2/) K T:(24) / Vn}'rs- {R(24) E(24) K Ts(Ai)/Zn} m] (17) 

where X_n, Yn, and Zn represent CIE X, Y, and Z values of  a given illuminant. Let 
us Xj a column matrix [ L(,~/), A(2i), B(2/)] r. Suppose an uniformed illuminant, 
E(24)=[1], and human visual response l(24), a(;tp, and b(2i) for a surface with unit 
reflectance, then the norm of  human visual difference vector between original and 
the estimated one become: 

x j - x ) ] =  l/r(~)tl {R(24) '~- R'(~,)'" }, 08) 

where llr(~)[ I ={Z(24) 2 + a(24)= + b ( ~ }  '~-. ~ e  quantity corresponding to equation 

(I 1) is then represented by: 

z {llrtql{R(~j) " ~ -  R'txj) '/~}} ~ (19) 
sample j 

There are two obstacles to apply HVC with a non-linear color space in a linear 
model: 
1) It is impossible to separate SR R(24) from the minimization equation (19), hence 
human visual weighting function cannot be derived; 
2) It is hard to understand LAB values at sample wave lengths because LAB values 
are defined from the sum of XYZ values along to wave length. Moreover, LAB space 
is non-linear to reflectance space. Hence, there is difficult to apply LAB values as the 
HVC in the linear model directly, even though the color space describes the HVC 
quite well. Hence, assuming a recovered human visual response H'(24), then HVWF 
can be derived by minimizing a different quantity fi'om equation(19): 

Z Z tllr¢,~)ll ~'~ .R¢,~j) - ~ ¢,~j)l a (20) 
sample j 

where llr )tl '/p is p-norms defined by (IT 1 I P + IT 2 [P + ir~l p) '/P,p > 1 ,  ( 2 

Here, we try to define a quantity similar to equation (19) that uses the p-norms of  
LAB values and extracts p by minimizing the total error for variables. HVWF at 
sample wave lengths in the above equation is defined by: 

HVWF(24) =[ {L (24) }P+ {A(24) } P+ {B(Aj) } v] ,~ (21) 
To get more information about LABp the original spectra are reconstructed and the 
errors are estimated for the dimension of  basis vector from three to seven. The errors 
of the reconstructed spectra decrease as the number of basis increases from three to 
seven while the maximum errors in XYZ space increase. This is due to minimize not 
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XYZ error but the error of  weighted spectra o f  LAB~-2 for deriving the linear model. 
The basis vector of  parameter p=2 gives the best reconstruction for spectra, XYZ, and 
LAB. Figure 1 shows three kinds o f  HVWFs that are uniform, CMF, and LAB the 
case of  p=2, where the LAB has three maximum points that is different from CMF. 

dn i f o rm  
0 .1  - - . . . . .  LAB  

4 ,~ . . . .  C M F  
0 .08  - ",~ 

oj 0 . 0 6  - : I ",¢ 

~. 0.04 : ', / .- '" . . . .  " "  
: , .L . "  

o,o2 - : " , t . . -  ":¢. 

wave length(rim) 

Fig. 1 Example of  the HVWFs with uniform sensitivity, CMF, and LAB. 

3.3 Basis Functions Using HVWFs 
Reflectance set weighted with the HVWF produces weighted spectra set Sh: 
Sh= H~R (22) 

where entries of  diagonal matrix Hv are values o f  HVWF and R is 31 by 1. For 
deriving new basis vectors  for the spectra weighted by HVWF Sh, SVD performed to 
minimize the error in the human visual domain: 

Ch = (I/p)-ShS ~ = Uh DhV~, (23) 

where C h is a correlation matrix o f  t ~  spectra weighted by HVWF and D h is a 
diagonal matrix. The first d columns~Of U h are orthonormal basis vectors for the 
linear model B h. The 690 reflectance set is used for obtaining these vectors. Figure 2 
represent the furst four basis vectors for SR weighted by LABp=2. The feature of  the 
LAB basis vector is different from tl~ conventional and CMF cases [10]. The 
relation between a matrix of  original SR S and a reconstructed one S '  becomes as: 

S' = B h W h = B h (Bh +S) = (B h Bh +)S = Ph S. (24) 
Let a matrix for mapping the original spectra S onto the reconstructed spectra S '  be 
the projection matrix P h ,  via the basis vectors. The spectral reflectance estimated 
from the reconstructed spectra S '  can be obtained by: 

d 
R'(2) = ~ 8 h i  ( 2 ) W h / / H V W F ( A ) .  (25) 

/=1 
0 . 4  - , ,  1 s t  
0 . 3  r " \  _ 2nd 

. . . , , . s  " % ~ , . ' "  ."', " - . . .  3 r d  0.2- "M" ., ~" ~ """ 
4 t h  

0 - - ~ ° , . ~ "  ~ - t ". " . . . . .  

o -o.~g a , : ~ ; ' ~ , ,  

- 0 . 4  - 
- 0 , 5  - w a v e  t e n g t h ( n m )  

Fig. 2 The first four basis vectors for SR weighted by LAB 
The mean error E c between the original and the approximated spectra is defined as: 

eh --ils-p, sll (26) 
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The HVWF in equation (24) is found at each term of S '  and S: 
diag. ( Hv )R '= Ph diag. ( Hv ) R. (27) 

Equation (27) can be rewritten by removing Hv in each term: 
1¢'= e h R. (28) 

4 Experiments and Discussion 
A reflectance data set of 690 materials was selected for our experiments. The 690 

SR data set consists of the following materials: 1) 400 color chips picked from 
Munsell color book measured using a PhotoResearch-703 spectro-radiometer; 2) 120 
paint chips which selected from the Solid Selection of DuPont Color Sample, 170 
natural and man-made objects, including rocks, plants and vegetation, human skin 
and hair, and fabrics of which complete data are available in ftp.eos.ncsu.edu [7]. In 
our experiment, we select the data set measured at 10nm interval in 400-700rim 
range. The averaged errors of reconstructed SR is estimated by the square root of 
equation (4) and the color differences on XYZ and LAB color spaces of the 
reconstructed SR can be estimated under the illuminant E, respectively [8]. 

Table 1 The errors for 3-7 Dimensional Reconstruction in the case of the CMF 

ERROR Basis 

Dimen LAB 
-sion 

avg. max. 

3 2.931745 28.57438 

4 1.665761 14.59375 

5 1o070622 14.59240 

6 0.554749 6.638414 

7 0.491418 6.068511 

XYZ 

avg. max. 

0.914159 6.413741 

0.398795 3.818641 

10.272975 2.981871 

0.213997 2.654337 

0.138272 1.923089 

Re£ 

avg. max. IS'E.V.(%) 

0.027008 0.12995 99.11 

0.01715 0.106929 99.62 

0.01314 0.076783 99.84 

0.011001 0.074365 99.9l 

0.008812 0.065608 99.96 

Table 1 summarizes the error distributions of three cases for the CMF. The errors are 
estimated under the five CIE standard illuminants, Dso, Dss, Drs, D75, arid A for 690 
SR using three-seven dimensional basis. The range of XYZ error distribution is 
under 0.92 and the LAB errors show below 2.93. Table 2 represents the details of the 
errors for 3-7-Dimensional reconstruction in LAB case. Table 1 and Table 2 show 
that the reconstuctitve ability of the LAB case is better than the CMF case. 
Table 2. The errors for 3-7 Dimensional Reconstruction in the case of LAB~z 

Basis ERROR 
Diemsion LAB XYZ 

avg. max. avg. max. 

3 1.6989 15.0783 0.5555 3.3592 

4 1.2340 18.4376 0.4621 2.5695 

5 0.9171 13.7532 0.2967 2.9619 
6 0.5913 6.8157 0.2379 2.9637 

7 0.5075 5.4517 0.1716 1.9063 

avg. 

0.0258 

0.0171 

0.0123 
0.0108 

0.0086 

Re£ 

max. lstE.V.(%) 

0.1248 98.96 

0.1034 99.60 

0.0731 99.83 
0.0731 99.90 

0.0652 99.95 

Table3 shows mean and maximum errors by three dimensional basis for three kinds of 
HVWFs. There is no serious difference among mean reflectance errors but maximum 
error has minimum value at uniformed HVWF. In the case of the LABp=_,, the average 
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LAB error of the reconstructed SR data under five different standard illuminants was 
1.569018 that shows the best reproduction in our experiments. It is clear that the LAB 
error of uniformed HVWF is about 5.7, so the basis vectors of conventional type is 
difficult to be used for the purpose of  special applications which need color 
discrimination between the original spectra and the reconstructed spectra. We can make 
a conclusion from table 1, table2, and table3 that the basis vectors derived from the LAB 
reconstruct the most accurate colors in our experiments. 
Table 3 Errors estimated by the linear models using 3-D basis for 690 data set 

ERROR 

HVWFs LAB XYZ 

Uniform 

CMF 

LAB 

avg. max. 

5.750791 52.085278 

2.931745 28.574381 

1.698997 15.078359 

avg. max. 

1.569018 ll.654885 i 

0.914159 6.413741 

0.555544 3.359257 

Ref. 
i 

m a x .  a v g .  

0.021617 0.101884 

0.027008 0.12995 

0.025865 0.1248 

ILLUMINATION EFFECT IN THE LINEAR MODEL: 
The color differences of  the LAB unit o f  the 690 spectrum reconstructed by each 

linear model for five standard illuminants are given in table 4 in the case of three 
dimensional basis vectors. The CMF(D65) is the CMF estimated by equation (10) 
under the illuminant D65 and LAB(D6s) is the case of the LAB estimated in D6s. CIE 
D65 standard illuminant is assumed as a representative of  illuminant. Table 4 
summarizes the effect of  the representative illuminant in linear models for the case of  
three dimensional basis. We can observe that the illumination effect on CMF(D65) is 
very serious while the representative o f  illumination of  LAB(D65) display the worse 
effect than the uniformed illuminant o f  LAB. The main reason for the difference of  
illumination effect is, we think, that the illumination in equation (21) is non-linear to 
LAB. The mean LAB color difference of  CMF(D6s) reduced to about 70 % of the 
that of the CMF case except for the illuminant "A" with about t 11%, which is due to 
the characteristic of  representative illuminant. This gives us another important 
conclusion again that, basically, basis vectors in the linear model have to be derived 
independent of illumination characteristic. But carefully selected representative 
illuminant for the special purpose can increase the accuracy of  representation of the 
linear model for SR data. For example, if we consider the linear model under the 
various day lights, it is easy to guess that the selection of proper representative 
illuminant will support to increase the accuracy. We can also know from the 
experiments for varying illuminant that the proposed linear model can be applied in 
reconstruction of  color signals that are the product of  spectral reflectance and 
illuminant with the same accuracy. 
Table 4 Illuminant effect in linear models in the case of  three dimensional basis 

illluminant uniformed 

D~0 5.633101 

D~5 6.00571 

D~5 6.35477 
Dr5 6.61387 
A 4.14648 

CMF 

2.63924 

2.91406 

3.28648 
3.59474 

2.22418 

HVWFs 
CMF(D65) (% of CMF) LAB LAB(D65): 

1.8940971.59%) .... 

2.09597(71.72%) 

2.42434(73.63%) 
2.71411(75.48%) 

2.48798(I 1 t.5%) 

1.36240 

1.42634 

1.57878 
1.75749 

2.36995 

1.38171 

1.44550 

1.59586 
1.76890 

2.59246 
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5 Conc lus ions  
In this paper, we have proposed color linear model, which explicitly takes 

into account human visual perception. Two kinds of HVC are derived from CIE color 
matching functions and LAB representation of the color matching functions. Those 
have been used for the reconstruction of  spectral data sets of natural objects and the 
errors of reconstruction have been analyzed in terms of reflectance, XYZ, and LAB 
values. Through extensive experiments using 690 samples we observed that the 
proposed color linear models are superior to conventional linear model for the color 
representation of SR. The carefully selected representative illuminant increases the 
accuracy of the linear model for SR and the linear model can be applied in 
reconstruction of color signals with the high accuracy from the observation of the 
illumination effect. 
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