Abstract
In this paper, procedures for creating an effective linear model to represent surface spectra are presented. The model is derived by considering spectral data and the human visual characteristic that depends on wave lengths. Two human visual weighting functions (HVWF) are derived from human visual characteristic. The basis functions of the linear model for the surface reflectance are selected by minimizing least square error in approximating the spectral data weighted by the HVWF. The linear model is shown to perform better than conventional linear models for color constancy, the surface identification related to object recognition, and the characterization of a scanner and a camera.
Chapter PDF
Similar content being viewed by others
References
J. Cohen, Dependency of the spectral reflectance curves of Munsell Color chips, Psychnomic Sci. 1, 367–370 (1964).
J. Parkkinen, J. Hallikainen, and T, Jaaskelainen, Characteristic spectra of Munsell colors, J. Opt. Soc. Am. A, 6, 318–322 (1989).
L. T. Maloney, Evaluation of linear models of surface spectral reflectance with small numbers of parameters, Color Res. & Appl. 14, 325–334 (1986).
L. T. Maloney and B. A. Wandell, Color constancy: A method for recovering surface spectral reflectance, J. Opt. Soc. Am. A, 3, 29–33 (1986).
M. J. Vrhel and H. J. Trussell, Color Correction using principal components, Color Res. & Appl., 17, 328–338 (1992).
D. Marimont and B. A. Wandell, Linear models of surface and illuminant spectra, J. Opt. Soc. Am. A, Vol9, No. 11. Nov., 1905–1913 (1992).
M. J. Vrhel, R. Gershon, and L. S. Iwan, Measurement and Analysis of Object reflectance Spectra, Color Res. & Appl. 19, 4–9 (1994).
G. Wyszecki and W. S. Stiles, Color Science 2nd Ed., John Wiley & Sons (1982).
W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in C-The Art of Scientific Computing, Cambridge Univ. Press (1992).
S. D. Lee, C. Y. Kim, and Y. S. Seo, Linear Model of Surface and Scanner Characterization Method, in IS&T/SPIE's Symposium on Electronic Imaging: Device Independent Color Imaging II, Feb., San Jose, California, 84–93 (1995).
T. Jaakelainen, J. Parkkinen, and S. Toyooka, Vector-subspace Model for color representation, J. Opt. Soc. Am. A, Vol. 7, No. 4, April,725–730 (1990).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, CY., Seo, YS., Kweon, IS. (1997). Color linear model. In: Del Bimbo, A. (eds) Image Analysis and Processing. ICIAP 1997. Lecture Notes in Computer Science, vol 1310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63507-6_184
Download citation
DOI: https://doi.org/10.1007/3-540-63507-6_184
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63507-9
Online ISBN: 978-3-540-69585-1
eBook Packages: Springer Book Archive