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Abstract. The main limitation of current magnifying techniques is that 
they do not introduce any new information into the original image. This 
lack of information is responsible for the perceived degradation of the 
enlarged image. The idea underlying this work is to estimate missing fre- 
quencies from the original low resolution image and to synthesize them. 
Sub-pixel edge estimation and a polynomial interpolation step are the 
key techniques of the proposed method. Furthermore, a new extension 
to color images is presented. Results are encouraging even if they sug- 
gest that further effort should be spent in improving edge localization 
accuracy. 

1 I n t r o d u c t i o n  

Image definition is the amount of performable detail with a given resolution and 
it is a key factor in perceived-quality assessment. Preserving definition in image 
transforms is a demanding task because i t  sits ;on the overlapping between two 
domains: the physical and the perceptual ones. 

Interpolation methods, usually employed in image magnification, cause a 
degradation in the enlarged image due to definition loss. In this paper we devel- 
oped a new magnifying detail-preserving technique. The input of the problem 
is a low resolution (LR) image, with its finite information content, and the out- 
put is a high resolution (HR) version of the same image. The research goal is 
to produce a perceived high quality in the high resolution image, i.e. an image 
that should be perceived at least as nicely as the low resolution one by a human 
observer. 

As edges are high spatial frequency features, they strongly affect the per- 
ceived image sharpness and quality. If we assume that the low resolution image 
is as a subsampled version of the high resolution one, we can estimate where the 
edges "were" before subsampling and then use this spatial information to recon- 
struct as exactely as possible the missing information. Therefore, edge estimation 
must be sub-pixel and the reconstruction of the HR image must keep into ac- 
count the estimation results. The idea consists in modifying a usual intepolation 
scheme, e.g. bilinear or bicubic interpolation, in order to prevent interpolation 
across edges° 

2 Sub-Pixel Edge E s t i m a t i o n  

Our sub-pixel edge estimation is based on the Altelbach and Wong's work [1]. 
Problem analysis revealed that estimation accuracy is the most important prob- 
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lem in image magnification because edge localization strongly affects the enlarged 
image quality. The authors proposed a linear approach which we have found to 
be error prone. Starting from a center-on-surround-off filtered LR image they 
linearly interpolate the zero-crossing (ZC) points by a heuristic procedure which 
depends on the sign geometry of the low resolution pixels; then they quantize 
the analytical estimated edge to the high resolution grid. 

Contrary to Allelbach and Wong, we found that both rotational invariance 
and localization of the filter strongly affect the edge-map accuracy, and hence we 
looked for a trade-off between these two properties, developing a 5 x 5 filter which 
we called ROT. This filter, built by discretization of a positive constant disk- 
shaped region with a constant negative surround ring, mimics the well known 
LOG, which is rotationally invariant, but with more localized response due to 
its smaller dimension. Of course the non-directional property of the Laplacian 
is lost in discretization; thus also the ROT filter is not non-directional, but we 
found that it has an increased sensitivity along diagonals and other angles if 
compared to the simple rectangular filter proposed in [1]. 
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Fig. 1. Linear sub-pixel edge estimation. 

Once the low resolution image has been ROT-filtered the ZCs are estimated 
according to the Allelbach and Wong's idea but using bicubic interpolation in- 
stead of the linear one. Referring to figure 1, the linear sub-pixel estimation 
procedure may be summarized as follows: for each group of 4 LR pixels (the 
4-group) of the filtered image, according to their sign geometry, sub-pixel ZCs 
are estimated by linear interpolation between LR pixel pairs a-b, a-c and a-d. 

Unfortunately the simple linear approach is not accurate, thus we modified 
the estimation scheme considering the bicubically interpolated filtered image. 
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Fig. 2. Comparison between linear estimation approach and bicubically interpolated 
filtered image. 

Edges are still represented as joint segments as well as in Allelbach and Wong's 
approach, but ZCs are computed by mean of bicubic interpolation which is much 
more accurate mainly along diagonals. Figure 2 shows the comparison between 
the linear estimated edge-map (white lines), and the bicubically interpolated 
ROT-filtered image (regions); the isolated points are the LR pixels. Circles point 
out that significant differences are prominent in diagonal directions, while hori- 
zontal and vertical estimates are substantially good. The figure also shows how, 
where linear boundary estimations conincide to the bicubic ones, the piecewise 
linear boundary representation appears somehow smooth, while preserving all 
the advatages of a representation by 1st order curves. 

A great advantage of such a piecewise linear boundary description is its flex- 
ibility, which may be exploited in order to solve another important problem 
in edge-map estimation, i.e. the disagreement between the estimated edge po- 
sitions and real region boundaries (true edges) in the LR image. Unmatching 
information leads to undesired resuts in interpolation. Allelbach and Wong's 
preprocessing step tries to solve this problem modifying the original image ac- 
cording to edge-map estimations. We found that this method creates artifacts in 
many real images. Furthermore, modifying the original image according to edge 
estimation results introduces the estimation error inside the original data, so 
that no correction will be possible. Unfortunately an edge correction scheme is 
not yet available due to the non-local nature it should have, so, while investigat- 
ing on such a global corrector, we improved the preprocessing step: we exploited 
edge-strength information from first derivative edge detection in order to replace 
only pixels on steep edges. 

3 R e n d e r i n g  t h e  S u r f a c e  

Rendering is the final step in which we reconstruct the high resolution image 
filling the absent information inside each 4-group by an EDI scheme. The es- 
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sential feature of this strategy is that  the interpolation process is modified to 
handle interpolation across edges, while, when no edges are found, a simple 
bilinear interpolation is performed)  When there is an edge inside the current 
4-group, the rendering procedure at tempts to reconstruct the surface according 
to a slope-controllable edge model. 
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Fig. 3. (a) General 1-D situation of polynomial interpolation; (b) Example plot of the 
polynomial curve at different values of n. 

The figure 3.a describes the typical 1-D situation. Xo, xx, x2, x3 are LR pixel 
positions and zo, z l ,  z2, z3 are their respective gray levels, xc is the estimated ZC 
point. Our idea is to fit a polynomial curve that  has a controllable slope ~E across 
the edge transition, and that  must interpolate the points ( x l , z t )  and (x2, z2). 
The point ze is the HR image value, i.e. the interpolating polynomial value, 
across the edge, and it represents a free parameter  of the algorithm. In order 
to have some correlation between the reconstructed image in the [xl, x2] range 
and neighbor LR pixels, we choose to drive the interpolating polynomial shape 
by its first derivatives Dt  and D2 in the range extrema xl and x2 respectively. 
These derivatives are computed as Dx = zl - Zo and D2 -- z2 - z3. 

3.1 P o l y n o m i a l  I n t e r p o l a t i o n  

The essential feature that  the interpolating polynomial should have is the ab- 
sence of oscillations whatever values the edge slope may have. Observing that  
the maximum slope depends on polynomial degree and oscillations depend on 
intermetiate degree terms, we use the following polynomial curves 

Zl ( t )  ~-- A1 [/glt -~- (1 - D1)t n] -{- Zl, for x E [xi,xe] (1) 

Z~(s) = A2 [/9:s + (1 - D2)s n] + z2, for x e [xe,x21 (2) 

x Higher degree interpolation is not needed because no high frequency components are 
present (edges) so that the bilinear interpolation, which is low-pass in its nature, 
does not cause blurring. 
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which represent the two joint curve segments in Ix1, x2], and where 

x E [xl ,xe]  ¢~ x = x l  + t(xe - x l )  and t e [0,1] 

x e [xe, x2] ¢~ x = x2 + s(x2 - xe)  and s e [0, 1] 

Let AE = z2 -- zl,/91 = D 1 / A 1 ,  and/92 = D2/A2; it may be easly proved that 
interpolation conditions are satisfied. Then we assign C o and C 1 continuity on 
the common point (xe,  ze) by fixing A1 = A2 + AE for C o and Z~(1) = -kZ~(1) 
for C 1, where k = (xe - x l ) / ( x 2 - x e )  is a normalization factor. Finally, computing 
first derivatives and doing substitutions, we get 

A2 = (n - 1)(D1 + kD2) A E  
(1 + k )n  1 + k (3) 

A 1 ----- A 2 "~ A E ,  (4) 

It should be noted that the continuity implies that the value ze depends on the 
other parameters; this is not a problem because Ze is a dummy point and it does 
not affect the perceived final image quality. 

The polynomial degree n must somehow be bounded to the LR edge slope in 
order to exactly reproduce the HR transition. Roughly speaking the higher is the 
edge step AE the higher is the probability the edge to be sharp, then the higher 
should be n. Anyway, we must consider that the effect of varying the exponent 
depends also on the magnification factor, because the polynomial curve with a 
low value of n affects a larger number of HR pixels, due to its flatter shape. By 
now we employ an heuristic relationship to bound n to the edge step height AE 
and to the magnification factor x2 - xl,  but we plan to gather and exploit some 
other information about the LR edge slope to improve the reproduction fidelity. 

3.2 2-D Extens ion  

Referring to figure 4.a and 4.b we compute the interpolating surface according to 
an heuristic procedure which ensures the desired slope across the edge and C o 
continuity among patches. Given the the HR pixel position, the interpolating 
segment through it, which is parallel to the edge, intercepts the border and 
the diagonal in points p and q respectively, hence the 1-D polynomial curve is 
evaluated in those points and computed values are used to linearly interpolate 
the HR pixel value. 

4 M i x i n g  E d g e s  a n d  S m o o t h  A r e a s  

A great disadvantage of ZC edge maps is that they do not carry any information 
about the edge strength, i.e. its slope. Roughly speaking the underlying assump- 
tion about the step-like shape of edges we attempt to reconstruct might be not 
verified where the real edge is more than one pixel wide. On the other hand we 
found that bicubic interpolation is suitable in such a case. Hence we compute 
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Fig. 4. 2-D extension of polynomial interpolation, example of geometry. A 4-group 
with its piecewise linear edge inside is shown. (a) Intercepted points (e.g. p and q in 
figure) are both on a border where a polynomial curve lies. (b) When an intercepted 
point is on a border where the polynomial curve does not lie (e.g. p in figure), its value 
is linearly interpolated between LR pixel values (e.g. c and d in figure). 

the final result, say R(i ,  j ) ,  by linearly mixing the polynomial synthesized image, 
say I(i ,  j ) ,  and the bicubically interpolated one, say B(i ,  j) .  Weights, between 0 
and 1, are choosen to be a HR version of the first derivative F D ( i , j )  of the LR 
image: 

R( i , j )  = F D ( i , j )  . I ( i , j )  + [1 - FD(i , j ) ]  . B ( i , j )  

foreach i , j  in the HR space. 

5 Extens ion to Color Images 

There is evidence that  the human visual system's (HVS) color coding process is 
based on three visual channels, one type is independent on the wavelenght, yet 
the other two have a chromatic sensitivity. Moreover, there seems to be general 
agreement that  spatial resolution is markedly lower in chromatic channels than in 
the achromatic one, hence high frequency informations, i.e. edges, come mainly 
from this channel [5-7]. 

Another important consideration is that,  in order to avoid chromatic artifacts 
in the enlarged image, a non-linear operator cannot be applied to each RGB 
component separately. The proposed technique is strongly non-linear due to the 
edge detection procedure. 

Hence the edge-map is built from the luminance image according to the 
HVS's spatial sensitivity, and directs the subsequent interpolation step on each 
RGB component separately. Artifacts due to color aberrations are negligible. The 
method can be improved by exploiting color information for a more accurate 
segmentation process and using perceptually uniform color spaces but which 
separate chrominance from luminance [6,4]. 
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6 R e s u l t s  

We tried our algorihm with many real images and results show that image def- 
inition is well preserved, even if magnification factors are quite large, i.e. 4-8 
along each dimension. Figure 5 shows a particular of a gray scale real image: the 
original image was magnified 8 times along each dimension, 64 times the surface, 
by bicubic interpolation and by our proposed method. The comparison between 
the two enlarged images exhibits a noticeable difference: boundaries in our im- 
age are quite sharp while a strong blurring effect is present in the bicubically 
interpolated one. 

(b) 

Fig. 5. (a) Proposed magnifying method; (b) Bicubic interpolation. 

7 Conclusions 

The problem of recovering the high frequency (HF) contents of a magnified 
image was tackled at first by reviewing existing proposals and learning about 
the models of human visual perception. The procedural starting point was chosen 
to be the work by J. Allelbach and P. W. Wong. Their methodology was studied 
and verified on some non-synthetic images. Main point of this methodology is 
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the idea of using sub-pixel estimations of edges as the most probable locations 
with high HF contents. This estimation is carried out by interpolating the result 
of a center-on-sorround-off filter and then looking for ZCs in the filtered image. 

Unfortunately the filter design is very critical because it must be as irro- 
rational as possible and as insensitive to noise as possible. A new version of 
such a filter is proposed in order to minimize edge displacements caused by the 
space discretization of digital images. Additionally some pre-processing filters 
were tried with some improvements on most images. 

Secondly, the comparison between a bicubically interpolated filtered image 
and the linear sub-pixel extimation showed that  the linear approach is error 
prone, leading to artifacts in the magnified image. 

The methodology has been extended to color images thanks to a unified 
(monochrome) edge map; artifacts due to color aberrations are negligible. 

A great advantage of our approach is the possibility to further sharpen the 
magnified image with an edge-enhancing filter [8] processing that  is not possible 
with standard (e.g. bilinear or bicubic) interpolations. 

Current results are encouraging (when magnifying each image dimension by 
4-8 times, i.e. 16-64 times the surface). Once the remaining sources of artifacts 
will be removed, this scheme will lead to a crisp and pleasing final result. 
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