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Abs t rac t .  We present a robust and accurate semi-automatic algorithm 
for registering and tracking a 3D geometric model in a 2D video stream. 
The algorithm is a generalization of the "Iterative Closest Point" tech- 
nique. Each itera.tion is composed of two steps: computation of camera 
parameters, and 3D/2D vertex matching. This last step is performed by 
polygon fitting in an edge image. To account for false matches, we use 
a robust M-estimation both for camera parameter estimation and 2D 
feature extraction. Experimental results show that accurate registration 
can be obta.ined even with very noisy outdoor images and incomplete 
data. Error analysis proves that the accuracy is obtained at the pixel 
level. 

1 I n t r o d u c t i o n  

Model-based vision leads to a vast improvement  in performance, at the cost of 
a prio'rz knowledge of the 3D geometry of one (or several) objects of the scene, 
and maybe of some user interactivity. In this framework, we show interest in 
fitting a geometrical CAD-model  of an object to a 2D image of the object in a 
complex sc~'ne (figure 4 and 5). In other words, the projection of the model into 
the image should match image features. In mathemat ica l  terms, the goal is to 
determine a 3D translat ion/rotat ion aligning (registering) the model with the 
image data. Our goal is to perform a model-based tracking of the object in a 
sequence of 2D images, thus partially reconstructing significant 3D information 
from the video stream. Although this is a general and important  vision problem 
per  sc, our application is augmented reality for entertainment,  i.e. mixing virtual 
and real-worM objects while ensuring visual and physical interactions [3]. For our 
application domain, accuracy  is a major  issue in the 3D information recovery, in 
order to avoid visual aberration in the augmented sequence. On the other hand, 
a~s we deal with real-world images, the object of interest is not restricted to lie on 
a uniform ba.ckground, yielding essentially in a noisy pre-processing stage (e.g. 
edge extraction). Therefore, we need a rob~tst algorithm for fitting and tracking. 
Indeed, our method needs to be accurate and robust for performing 3D/2D 
registration and t.rackiug. 

Model-based registration aad tracldng is a rather recent issue in computer  
vision. Lowe [8] performs the registration of a 3D model in a segmented (edge) 
image, and develops a robust tracking method based on Bayesian decision theory. 
Wunsch and Ilirzinger [10] propose a matching algorithm between an image and 
a polyhedral model based on the inverse perspective in order to give a 3D-3D 
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match. Lavall~e and Szeliski [6] compute a 2D-3D match of the occluding contour 
and use 3D distance maps and octrees to speed up the matching process. These 
methods are interesting but  they assume a clean segmentation of the object 
of interest and lack the registration accuracy that  we need in our applicative 
framework. Other methods of model-based pose estimation have been developed 
with emphasis on vehicle tracking [9,4]. 

Our method is mostly related to Kumar and Hanson [5] who use lines as 2D 
primitive and present a robust estimation of pose. We use the Iterative Closest 
Point (ICP) algorithm [1,111 combined with robust statistics [2,12]. 

2 A robust 3D/2D registration technique 

The main idea of our iterative algorithm is to improve a prediction of cam- 
era parameters by (i) computing the best match between a vertex point of a 
3D-polyhedral CAD model and a corner point of a 2D-image data, then (ii) run- 
ning a calibration algorithm based on the previous match. For outlier rejection 
and stabilization of the iterative process, we use robust statistics both for line 
estimation and for calibration. 

2.1 S t a t e m e n t  o f  t h e  p r o b l e m  

The goal is to find the camera parameters that  make the projection of the 3D- 
model consistent with the 2D-image, i.e. to minimize the following objective 
function: ~'~xEV Jig( P,  x ) -  H ( P ,  x)[[ (1). w.r.t, camera parameters P.  c~(P, .) is 
the matching operator, H ( P ,  .) the projection operator and V the set of vertices 
of the 3D polyhedral model. Thus the problems are : (1) estimating the optimal 
P ,  (2) computing operators a (P ,  .) and H ( P ,  .), and (3) being robust to noise 
and spatial uncertainty. Formally, the operator of projection is defined as a 
perspective transformation: 

H ( P , . )  :~3_._,~2 x = ( z  y z ) t  ~_, ~,vo + ~- (2) 

with (.r' yt z,)t = R ( z  y z) t + T where 1-t is the rotation and T the translation. 
cq,, ct~,, (u0. v0) are intrinsic camera parameters. 

Let us now introduce a robust version of the objective function and one that  
can be iteratively minimized (see section 2.2): 

f ( P '  Q) = E p(a(P ,  x ) -  H ( Q , x ) )  
xE V 

(3) 

where p is a M-estimator 1 (the classical least squares problem is obtained for 
~ 2  

p(x)  = 7 ) "  We have implemented many M-estilnators (Welsh, Cauchy,. . .  ) ; for 
x 2 

simplicity, we use the robust Geman-McClure M-estimator: p(x)  = t--4"~" 

1 p is a generalization of classical M-estimators to R2: p(x,y)  = p(x) + p(y). 
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2.2 D e s c r i p t i o n  o f  t h e  a l g o r i t h m  
Our purpose is to minimize the objective flmction P ~-~ f ( P ,  P )  w . r . t . P .  The  
main  idea is to adap t  the I terative Closest Point  ( ICP)  a lgor i thm [1] as follows: 

In i t i a l i za t ion :  interactive initialization (see section 2.3) of p 0  
R e p e a t  
M a t c h i n g :  computation of a(P~m),x) for each 3D vertex x. 

Sampl ing:  each projected line s ~ Model is sampled, giving M, = {(u .... vi. ,)}. 
Searching:  (x, , , ,  yi.,) := ClosestPoint(ui . , ,  vi.,) ~ in the contour image. 
Regress ion:  estimation of the best polygon fitting (xi, , ,  yi,,), (see section 2.4) 
C o m p u t a t i o n  o f  corners:  for all 3D vertex x, o'(P (m),x) = polygon corner. 

C a l i b r a t i o n :  computation of p(m+~) that minimizes P ~ f ( P ,  P(m)). This is a clas- 
sical non-linear calibration problem. To obtain a fastereonvergence we use a quasi- 
Newton technique. This is a robust version of [7], 

Un t i l  s t ab i l i za t i on  

2.3 I n t e r a c t i v e  I n i t i a l i z a t i o n  

For initializing the process, we have to compute  a camera  es t imat ion tha t  pro- 
vides approx imate  project ion of the model  onto  the image, The  user can intu- 
itively and easily match  a few vertices of  the 3D model  with corresponding image 
features (figure 1). The problem is then a classical cal ibrat ion problem. This  step 
provides the visible par t  of  the 3D model  in the 2D image, 

i:i:i:i:i::i~:!i?':i~i.'~ 5:i:::i:i:!¢::~i:)i:i.!:i !'i:i'i:i:!:i:::!:~:':i,i i ? : ' ~ i '  '" ' ~" .... ::::'i~R",:':¢,, '::. ~&:~'":~¢:".i~ :. '., '% 

":.:'?~:I:U~,',:" , '  x , ~  '.:::::':':':>: " : x "  • : : ~ .  

'" ": '" '  ~" ":!:i:i . . %  

.::1!:, :::::::::::::::::::::::: 

:.:i:~:::~..,..~... . ",.- " 
aD Model interactive ilnage matching 

Fig.  1. Initiafization is compnted using interactive matching followed by calibration 
algorit h m. 

2.4 R o b u s t  p o l y g o n  e s t i m a t i o n  

The  21_) polygon is defined by the graph (vertices and edges) of  the visible par t  
of  the 3D model.  It is parameter ized by the line equat ion of  each edge. A poly-  
gon corner is defined as a lille intersection. To find the polygon in edge nnage,  
we minimize the following objective fimtion w.r.t. (a , ,b . , ,e , ) . ,  : ~ i , . ,  p(ri,~) (4). 
where ri,., = a.,xi.., + b.~yi,s-}-cs is the residual of  line. Wi th  no other  informat ion,  
finding this min imum is equivalent to finding each line m i n i m u m  independently.  
The,'e are some constraints  tha t  could be added to es t imate  a coherent  polygon,  

Note that this operator is not differentiable. 
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e.g. the polygon should not be null and the intersection point is unique when 
more than two lines intersect (this is a graph constraint). We want to find a 
coherent polygon with respect to graph knowledge. A necessary condition that  
expresses that  lines li,lj,l~: intersect on a same point is de t ( l i , l j , lk)  = 0 with 
l = (a, b, c). This means that  if a point is defined as intersection of n > 2 lines, 
(n - 2 independent constraints). 

The main interest of this global 
minimization (instead of independent 
est imation of each line) is that  we 
take into account "good" lines versus " ,  

d "bad" lines (partially occluded lines ') , ,  
or "short" lines) with respect to con- " , ' .  
straints (see fig. 2). ; , / /  

Note that  the error distribution o , 
over the polygon has to be normalized 
for efficient M-estimation. 

_ .  I n d ep en d en t  line es t imat ion  

~I E s t i m a t e d  line intersect ion 

- -  E s t i m a t e d  polygon 

o D a t a  point  

\ 
2.5 E r r o r  a n a l y s i s  
There are many  sources of error in Fig .  2. Stability of intersection compu- 
the general registration problem. The tat ion 
model-based approach allows to com- 
pute the errors w.r.t, the model. There 
are many  errors involving the errors of computat ion of the transformation:  the 
matching error, the regression error, the projection error, the camera parameters  
error and the vertex projection error (see figure 3 for a geometric interpretation). 

The m a t c h i n g  e r r o r  is the error be- 
tween tile image data  and the 31) projec- 
tion. Let M = U~¢see M~ the set of all the 
sample points computed from section 2.2, 
and where Seg is the set of all edges of the 
3D-model. The error is defined as: m.x = 
[ [C loses tPo in t (x ) -x [1 ,  Vx 6 M (5). The 
matching error gives an idea. of the pres- 
ence of data.  It  is very sensitive to occlu- 
sion and noise. 

The r e g r e s s i o n  e r r o r  is the er- 
ror between image data  and polygon 
estilnation. It is defined a.s: r~ = 
d(ClosestPoint(x), s), gx 6 Use.S'eg Ms (6). 
where d(x, s) is the distance of point x to 

O p r o j e c t e d  point  

A Image  d ~ t a  
. , ,  projec%ed line 

segment s. This is a pure 2D error. The re- Fig.  3. Matching, regression 
gression error describes the corelation be- projection errors 
tween the da ta  and the est imated poly- 
gon. 

and 

The p r o j e c t i o n  e r r o r  is the error between the est imated 2D-polygon of the 
3D projection of the modeh 7r~ = d(x ,s ) ,  Vx E M (7). The projection error 
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gives an idea. of the quality of the reprojection. It  is not sensitive to occlusion or 
noise since they have been dealt with by polygon regression. 

Comput ing  the vertex projection error v,  is more complex and has to in- 
tegrate t.he following covariance matr ix  of camera parameters ,  polygon corners 
and line pa.rameters. See [13] for a full explanatioll. 

3 R e s u l t s  a n d  e x p e r i m e n t s  

(a) 1st image (b) 20th image 

Fig. 4. Tracking of 3[) CAD model "l/nbik cube" (in wireframe). 

First, we test, our algorithm on an easy case. The Rubik cube sequence con- 
tains twenty images of a Rubik cube in pure rotation with a. fixed camera.  Rota-  
tion is sampled very regularly. For all these reasons, the input data (edge image) 
is very clean and produces a large stability of view point. 

Our algorithnl gives very good results even with non robust est imation.  Only 
the first and the last frames of our tracking are displayed on figure 4. 

Our second data. set. is a video stream of 88 ilnages of a complex aerial view 
of the famous "Arche de la l)<~ffnse" nmuument  in Paris. This is a real-world 
application where the object is still and the camera has an unstable trajectory 
due to the helicopter. This is a complex example of tracking because the input 
da ta  is very noisy (low resolution, noise on video, missing data) and because the 
camera  motion is not smooth.  

Figure 5 displays the tracking result. Our algorithm with flfll robust esti- 
mat ion is able to track the a,'ch through the whole sequence. The algori thm 
provides a good reprojectiol~ of the 3D model into the video stream. Note the 
wide variations of point of view (rota.tion and translation). 

We now detail the t~erformance of the algorithm on the complex arch se- 
quence. Table 1 shows typical numerical results of errors in the 3D/2D registra- 
tion process. We sample each line at one point per pixel. Est imated segments 
have an average length of 40 pixels (maximuln length is 70 pixels and minimunl  
length is 8 pixels). In this sequence, each corner moves over 40 pixels. 
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(~) 1st image (b) 15th image 

(c) 30th image (d) 45th image 

(e) 60th im~tge (f) 75th image 

Fig. 5. Tracking of the arch. In wireframe, reprojection of the 3D model. Note the wide 
pose vaxiatious, and t.he correct estimation of occluded edges of the arch. 
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error type i've. 'm~ (equation (2.5)) rx (equation (2.5)) rx (equation (2.5)) 
mean error 0.5 1.23 0.63 0.16 

1.23 0.75 0.14 
8.64 6.66 0.5 
0.05 7.6e-3 2e-2 
892 892 892 

deviation 10.2 
max error 0.9 
rain error i0.2 
# of points 14 

c a m e r a  par,ameter ax ay az tx ty tz O'u O[v UO Vo 

value v 153 140 -0.71 -0.18 -0.21 -179 -90 909 536 594 
deviat ion a 1.2e-3 5.1e-4 3.5e-4 1.6 2.1 4.8 12.8 3.3 0.9 1.3 

0 Table  1. Error analysis of projection and of parameters of camera. (a.¢ ay a~) = r tan 7 
where (r,0) is the rotation, (G tu G) is the translation, c ~ , , , c ~ ,  u o , v o  the intrinsic 
camera parameters (see equation (2)). 

The  vertex location is obtained 
with an accuracy of 0.5 pixel (table 1, 
v~). This  is the main  error we wish to 
minimize, and the obtained precision 
is satisfactory. The regression error is 
about  0.6 pixel (table 1, regression er- 
ror 'r~.). It gives all idea of a presence of 
polygon in edge image. It is sensitive 
to corrupted data.  ' t he  matching  error 
is about  1.2 pixels (table 1, match ing  
error m~.), and basically reflects miss- 
ing image da ta  (occlusion etc.). Fi- 
nally the projection error is 0.16 pix- 
els a.nd reflect, the 3 D / 2 D  coherence of  
the polygon.  Our robust approach al- 
lows to deal with this rather large er- 
ror. The  es t imat ion of camera  pa.ram- 
eters is very good for all parameters .  

We observe tha t  through the video 
st, reanl, each corner 13loves lnore than 
~10 pixels, and still, our es t imat ion is 
accurate.  On Figure 6 we display the 
distr ibution of vertex projection error. 
Note tha t  it. is less than 1 pixel. 

~b 

F i g .  6 .  Distr ibution of  the vertex pro-  

j e c t i o n  error. Note tha t  the error is al- 
ways less than 1 pixel. 

4 C o n c l u s i o n  and future  work 

We presented an algori thm for robust a.nd accurate  registrat ion and tracking 
of a 3D-model  in video s t r e a m s .  The a.lgoritlml uses informat ion  about  edge 
loca.tion. It, is based on an IC, P mininaization technique. All estima.tions (2D- 
extract ion,  camera  parameter  computa t ion)  are robust,. ~re prove exper imental ly  
the robustness of the approa.ch t.o very noisy da ta  and importa.nt occlusion. 
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The experimental results are very encouraging. We are currently improving 
the method by performing temporM stabilization, e.g. Kalman filtering, post- 
computat ion regularization. The 2D-feature extraction technique can also be 
extended to more generic 2D-models like ellipses, or any parametric description 
of 2D-curves. 

Finally, the subpixel error obtained by our method should allow a straight- 
forward application to mixing virtual objects into video streams while ensuring 
3D coherence. 
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