Abstract
In practical applications of machine learning and knowledge discovery, handling multi-class problems and real numbers are important issues. While attribute-value learners address these problems as a rule, very few ILP systems do so. The few ILP systems that handle real numbers mostly do so by trying out all real values applicable, thus running into efficiency or overfitting problems.
The ILP learner ICL (Inductive Constraint Logic, learns first order logic formulae from positive and negative examples. The main characteristic of ICL is its view on examples, which are seen as interpretations which are true or false for the target theory. The paper reports on the extensions of ICL to tackle multi-class problems and real numbers. We also discuss some issues on learning CNF formulae versus DNF formulae related to these extensions. Finally, we present experiments in the practical domains of predicting mutagenesis, finite element mesh design and predicting biodegradability of chemical compounds.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H. Blockeel and L. De Raedt. Experiments with top-down induction of logical decision trees. Technical Report CW 247, Dept. of Computer Science, K.U.Leuven, January 1997.
J. Catlett. On changing continuous attributes into ordered discrete attributes. In Yves Kodratof, editor, Proceedings of the 5th European Working Session on Learning, volume 482 of Lecture Notes in Artificial Intelligence, pages 164–178. Springer-Verlag, 1991.
P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In Yves Kodratof, editor, Proceedings of the 5th European Working Session on Learning, volume 482 of Lecture Notes in Artificial Intelligence, pages 151–163. Springer-Verlag, 1991.
L. De Raedt. Induction in logic. In R.S. Michalski and Wnek J., editors, Proceedings of the 3rd International Workshop on Multistrategy Learning, pages 29–38, 1996.
L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99–146, 1997.
L. De Raedt and S. Dzeroski. First order jk-Causal theories are PAC-learnable. Artificial Intelligence, 70:375–392, 1994.
L. De Raedt and W. Van Laer. Inductive constraint logic. In Proceedings of the 5th Workshop on Algorithmic Learning Theory, volume 997 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1995.
B. Dolsak and S. Muggleton. The application of Inductive Logic Programming to finite element mesh design. In S. Muggleton, editor, Inductive logic programming, pages 453–472. Academic Press, 1992.
J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of continuous features. In A. Prieditis and S. Russell, editors, Proc. Twelfth International Conference on Machine Learning. Morgan Kaufmann, 1995.
S. Dzeroski, B. Kompare, and W. Van Laer. Predicting biodegradability from chemical structure using ILP. Submitted.
U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, pages 1022–1027, San Mateo, CA, 1993. Morgan Kaufmann.
M. Genesereth and N. Nilsson. Logical foundations of artificial intelligence. Morgan Kaufmann, 1987.
D. Kazakov, L. Popelinsky, and O. Stepankova. ILP datasets page [http://www.gmd.de/ml-archive/datasets/ilp-res.html],1996.
J.W. Lloyd. Foundations of logic programming. Springer-Verlag, 2nd edition, 1987.
R.J. Mooney. Encouraging experimental results on learning cnf. Machine Learning, 19:79–92, 1995.
U. Pompe and I. Kononenko. Probabilistic first-order classification, 1997. Submitted.
A. Srinivasan, S.H. Muggleton, M.J.E. Sternberg, and R.D. King. Theories for mutagenicity: A study in first-order and feature-based induction. Artificial Intelligence, 85, 1996.
L. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–1142, 1984.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Van Laer, W., De Raedt, L., Dzeroski, S. (1997). On multi-class problems and discretization in inductive logic programming. In: RaÅ›, Z.W., Skowron, A. (eds) Foundations of Intelligent Systems. ISMIS 1997. Lecture Notes in Computer Science, vol 1325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63614-5_27
Download citation
DOI: https://doi.org/10.1007/3-540-63614-5_27
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63614-4
Online ISBN: 978-3-540-69612-4
eBook Packages: Springer Book Archive