Skip to main content

Controlling engineering problem solving

  • Temporal Qualitative Reasoning
  • Conference paper
  • First Online:
Advanced Topics in Artificial Intelligence (AI 1997)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1342))

Included in the following conference series:

Abstract

Engineering problem solving requires both domain knowledge and an understanding of how to apply that knowledge. While much of the recent work in qualitative physics has focused on building reusable domain theories, there has been little attention paid to representing the control knowledge necessary for applying these models. This paper shows how qualitative representations and compositional modeling can be used to create control knowledge for solving engineering problems. This control knowledge includes modeling assumptions, plans and preferences. We describe an implemented system, called TPS (Thermodynamics Problem Solver) that illustrates the utility of these ideas in the domain of engineering thermodynamics. To date, TPS has solved over 30 problems, and its solutions are similar to those of experts. We argue that our control vocabulary can be extended to most engineering problem solving domains and employed in a variety of problem solving architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • de Kleer, J. (1975). Qualitative and quantitative knowledge in classical mechanics (Technical Report 352.). Cambridge, MA.: MIT Al Lab.

    Google Scholar 

  • Dejong, G. F. (1986). Explanation based Learning, Machine Learning: An Artificial Intelligence Approach, Vol. II. Los Altos, CA: Morgan Kaufman.

    Google Scholar 

  • Falkenhainer, B., & Forbus, K. (1991). Compositional modeling: Finding the right model for the job. Artificial Intelligence, 51, 95–143.

    Article  Google Scholar 

  • Forbus, K., & de Kleer, J. (1993). Building Problem Solvers: MIT Press.

    Google Scholar 

  • Forbus, K., & Whalley, P. B. (1994). Using qualitative physics to build articulate software for thermodynamics education. In Proceedings of the International Joint Conference on Artificial Intelligence.

    Google Scholar 

  • Kuipers, B. J., & Shults, B. (1994). Reasoning in logic about continuous systems. In Proceedings of the 8th International Workshop on Qualitative Reasoning about Physical Systems, Nara, Japan.

    Google Scholar 

  • Laird, J., Rosenbloom, P., & Newell, A. (1986). Universal Subgoaling and Chunking: Kluwer Academic Publishers.

    Google Scholar 

  • Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Models of competence in solving physics problems. Cognitive Science, 4(4), 317–345.

    Article  Google Scholar 

  • McAllester, D. (1978). A three-valued truth maintenance system. Ph.D Thesis, Department of Electrical Engineering, MIT, Cambridge, MA.

    Google Scholar 

  • Pisan, Y. (1995). A Visual Routines Based Model of Graph Understanding. In Proceeding of the Seventeenth Annual Conference of the Cognitive Science Society, Hillsdale, NJ.

    Google Scholar 

  • Priest, A., & Lindsay, R. (1992). New light on novice-expert differences in physics problem solving. British journal of Psychology(83), 389–405.

    Google Scholar 

  • Sgouros, N. M. (1993). Representing physical and design knowledge in innovative engineering design. Ph.D Thesis, Department of Computer Science, Northwestern University, Evanston, IL.

    Google Scholar 

  • Skorstad, G., & Forbus, K. (1990). Qualitative and quantitative reasoning about thermodynamics. In Proceedings of the 10th Annual Conference of the Cognitive Science Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Abdul Sattar

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pisan, Y. (1997). Controlling engineering problem solving. In: Sattar, A. (eds) Advanced Topics in Artificial Intelligence. AI 1997. Lecture Notes in Computer Science, vol 1342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63797-4_103

Download citation

  • DOI: https://doi.org/10.1007/3-540-63797-4_103

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63797-4

  • Online ISBN: 978-3-540-69649-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics