Abstract
The use of Data Mining in removing current bottlenecks within Case-based Reasoning (CBR) systems is investigated along with the possible role of CBR in providing a knowledge management back-end to current Data Mining systems. In particular, this paper discusses the use of Data Mining in two aspects of the MZ system [ANAN97a], namely, the acquisition of cases and discovery of adaptation knowledge. We discuss, in detail, the approach taken to discover cases and outline the methodology to discover adaptation knowledge. For case discovery, a Kohonen network is used to identify initial clusters within the database. These clusters are then analysed using C4.5 and non-unique clusters are grouped to form concepts. A regression tree induction algorithm is then used to ensure that the concepts are rich in information required to predict the dependent variable in the data set. Cases are then chosen from each of the identified concepts as well as outliers in the database. Initial results obtained in the acquisition of cases are presented and analysed. They indicate that the proposed approach achieves a high reduction in the size of the case base.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases, Proc. of the 20th Int. Conf. on VLDB, pp. 487–499, Chile, 1994.
S. S. Anand, B. W. Scotney, M. G. Tan, S. I. McClean, D. A. Bell, J. G. Hughes, I. C. Magill. Designing a Kernel for Data Mining, IEEE Expert, pp. 65–74, April, 1997.
S. S. Anand, W. Dubitzky, D. Patterson, A. Schuster, J. G. Hughes. M2: A First Step Towards Automated Generation and Updating of Case-Knowledge from Databases, Internal Report, Faculty of Informatics, University of Ulster, 1997 (available from http: //iservel. infj. ulst. ac. uk. 8080/m2. ps).
K.D. Ashley, E.L. Rissland. A case-based approach to modelling legal expertise, in IEEE Expert, 3(3), pp. 70–77, 1988.
CLEMENTINE User Guide, Integral Solutions Ltd, Basingstoke, England, 1996.
O. Curet, J. Elliott, M. Jackson. Designing knowledge discovery based systems in business, finance and accounting with a case-based approach: two case studies, IEE Colloquium on Knowledge Discovery and Data Mining, 1996.
W. Dubitzky, J. G. Hughes, D. A. Bell. A Generic, Object-Oriented CaseKnowledge Representation Scheme, and its Integration into a Wider Information Management Scenario, in Expert Systems: The International Journal of Knowledge Engineering and Neural Networks, vol. 13 (3), pp. 219–233, Blackwell Publishers, UK, 1996.
W. Dubitzky, J.G. Hughes, D.A. Bell. Case Memory and the Behaviouristic Model of Concepts, in Proc. Advances in Case-Based Reasoning, 3rd European Workshop, EWCBR-96, pp 120–134, Switzerland, 1996.
W. Dubitzky, A. Schuster, J.G. Hughes, D.A. Bell, K. Adamson,. How Similar is VERY YOUNG to 43 Years of Age? On the Representation and Comparison of Polymorphic Properties, 15th International Joint Conference on Artificial Intelligence, Japan, 1997.
U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Editors). Advances in Knowledge Discovery and Data Mining, AAAI/ MIT Press, 1996.
F. Gebhardt. Discovering interesting statements from a database, Applied Stochastic Models and Data Analysis, Vol. 10, pp. 1–14, 1994.
K. Hanney, M. T. Keane. Learning Adaptation Rules From a Case-Base, in Proc. of European Workshop on Case Based Reasoning, pp. 179–192, 1996.
R. S. Michalski. A Theory and Methodology of Inductive Learning, in Machine Learning: An Artificial Intelligence Approach ed. R. S. Michalski, J. G. Carbonell, T. M. Mitchell, pp. 83–134, 1983.
Z. Pawlak, J. Grzymala-Busse, R. Slowinski, and W. Ziarko. Rough Sets, Communications of the ACM, Vol. 38, pp. 89–95, 1995.
A. Schuster, W. Dubitzky, D.A. Bell, J.G. Hughes, K. Adamson. Aggregating Features and Matching Cases on Vague Linguistic Expressions, 15th International Joint Conference on Artificial Intelligence, Japan, 1997.
E. E. Smith, D. L. Medin, Categories and Concepts, Harvard University Press, Cambridge, Massachusetts, 1981.
B. Smyth, M. T. Keane. Remembering to Forget: A Competence-Preserving Case Deletion Policy for Case-Based Reasoning Systems, in Proc. of IJCAT-95, pp 337–382, 1995.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Anand, S.S., Patterson, D., Hughes, J.G., Bell, D.A. (1998). Discovering case knowledge using data mining. In: Wu, X., Kotagiri, R., Korb, K.B. (eds) Research and Development in Knowledge Discovery and Data Mining. PAKDD 1998. Lecture Notes in Computer Science, vol 1394. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64383-4_3
Download citation
DOI: https://doi.org/10.1007/3-540-64383-4_3
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64383-8
Online ISBN: 978-3-540-69768-8
eBook Packages: Springer Book Archive