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Abstract. The job-shop is a classical problem in manufacturing, arising daily in factories
and workshops. From an AI perspective, the job-shop is a constraint satisfaction problem
(CSP), and many specific techniques have been developed to solve it efficiently. In this
context, one may believe that generic search and CSP methods (which typically are better
understood and easier to develop, codify and maintain than specific approaches) are not
appropriated for this problem. In this paper, we contradict this belief. We show that
generic search and CSP algorithms and heuristics can be successfully applied to job-shop
problem instances that have been considered challenging by the job-shop community. In
particular, we use forward checking with support-based heuristics, a combination of a
generic CSP algorithm with generic heuristics. We improve this combination replacing the
depth-first search strategy of forward checking by a discrepancy-based schema, a generic
search strategy recently developed. Our approach obtains similar results to specific
approaches in terms of the number of solved problems, with reasonable requirements in
computational resources.

1.  Introduction

The job-shop problem involves the temporal sincronization of the production of n jobs on
m machines. Each job is composed by a sequence of m operations; each operation has a
duration and it requires the exclusive use of a machine for its duration. Each job has a
release date and a due date between which it should be accomplished. A solution of this
problem can be formulated in different ways, as optimization or decision problems. In this
paper, we consider the job-shop with non-relaxable time windows, for which a solution is
a temporal assignment of operations to machines in such a way that jobs are perfomed
timely, satisfying the sequence of its operations and respecting that any machine is used by
at most one operation at any time.

The job-shop is a classical problem in manufacturing to which a considerable amount of
research has been devoted in different fields of Computer Science. The interest for this
problem is not purely academic, since it represents many real-world problems that arise
daily in factories and workshops. Simpler, easier or more efficient solving methods are of
great interest, because of the practical implications they may have.

From an Artificial Intelligence perspective, the job-shop has been treated as a constraint
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satisfaction problem (CSP) by several authors, who have developed efficient solving
approaches. However, most of these approaches are specific for the job-shop problem.
The purpose of this paper is to show that generic search and CSP algorithms and heuristics
can be successfully applied to the job-shop problem, obtaining similar results which are
close in performance to the results obtained with specific techniques. Our approach obtains
similar results to specific approaches in terms of the number of solved problems. Our
approach does not outperform specific approaches in terms of CPU time, but it reaches a
reasonable performance using generic search and CSP methods which, in general, are
easier to develop, codify and maintain than specialized approaches.

This paper is organized as follows. In Section 2, we revise the last approaches to the
job-shop from AI. In Section 3, we express the job-shop as a CSP with two different
formulations. In Section 4, we solve both formulations using depth-first based CSP
algorithms. In Section 5, we solve again both formulations using discrepancy-based
algorithms, a new type of search algorithms recently developed. In both Sections, we
provide experimental results using a benchmark widely used in the literature. Finally, in
Section 6, we summarize the contributions of this work.

2.  Related  Work

The job-shop problem has been object of intense research from different perspectives. In
the following, we summarize some recent approaches from an AI point of view.

A very influential work was due to Sadeh and colleagues [Sadeh et al, 95; Sadeh and
Fox, 96]. They formulate the job-shop as a CSP, where variables are associated with
operations, variable domains are possible start times, and constraints involve precedence
among operations and exclusivity in resource use. To solve this problem, they achieve
initial local consistency on precedence constraints, and they use forward checking plus
some extra local consistency on resource constraints as the basic algorithm. They develop
two specific variable and value ordering heuristics based on resource contention,
denominated ORR and FSS respectively. They use a benchmark of 60 randomly generated
problems with job-shop structure. With this approach, they solve 52 out of 60 problems,
visiting less than 500 nodes, outperforming existing approaches at year 1991. Next year
they were able to solve all problems modifying the algorithms to enhance it with dynamic
consistency enforcement, learning and a backjumping heuristic which renders the algorithm
incomplete. Coincidentally, another approach [Muscettola, 94] was able to solve the 60
problems using a stochastic search procedure based on Monte-Carlo simulation using a
bottleneck partitioning approach and a global heuristic based on resource contention.

Alternatively, Smith and Cheng [Smith and Cheng, 93] formulate the problem as a
search in a binary decision tree, where each node represents two operations that compete
for the same resource. A node has two successors, the two possible orderings for two
operations. When one of the orderings is selected, this decision is propagated over the
possible start and finish times of all other operations. In addition to this problem
formulation, the main contribution of this approach is a dynamic variable ordering heuristic
(which pair of operations consider next) and a dynamic value ordering heuristic (which
operation post first), based on slacks (free period) left by two operations competing for the
same resource, when they are scheduled from their earliest start time and consecutively.
These heuristics are used in a very simple search method (PCP), which selects two



operations, determines which one is scheduled first and propagates the effect of this
decision. If no operation appears unfeasible, the process iterates, otherwise it stops and
returns false (no backtracking is done). With this approach they solve 56 out of 60 Sadeh
problems. Using a more complex version of their heuristics, modified in a somehow ad-
hoc manner, they are able to solve the 60 problems.

Finally, Crawford and Baker [Crawford and Baker, 94] codify Sadeh's benchmark as
propositional satisfiability problems (SAT), and they solve them using a complete
algorithm (Davis-Putnam procedure) and two incomplete ones (GSAT and ISAMP). Only
ISAMP is able to solve the 60 problems, with a upper limit of 20,000 tries.

From this brief analysis, we can identify complex specialized algorithms such as a
modified forward checking with incomplete backtracking [Sadeh et al, 95], complex
heuristics based on global resource contention (ORR/FSS [Sadeh and Fox, 96], CPS
[Muscettola, 94]), or specialized local heuristics such as the slack based [Smith & Cheng,
93]. Only the formulation of Crawford and Baker seems to be generic. However, this
approach also presents some drawbacks, and it is the size of the SAT translation of a
problem. According to [Harvey, 95], a typical benchmark problem is translated into a
theory of 100,000 clauses and 20,000 literals, using more than 1 Mbyte of memory, which
seems not to be very operational from a practical perspective. Regarding completeness, all
approaches solving the whole benchmark are incomplete (although PCP can be completed
easily). For all this, it seems to be a plausible goal to look for simple, generic solving
methods for the job-shop, easy to implement and debug, which could solve the problem
with a reasonable performance.

3.  The  Job-Shop  as  CSP

A CSP is defined by a set of variables taking values on finite domains, and a set of
constraints disallowing combinations of values that cannot be simultaneously assigned.
Considering the job-shop as a CSP, variables are operation start times (sti), domains (Di)
are determined by each operation earliest start time (esti), latest finish time (lfti) and
duration (di), Di=[esti, lfti-di]. Constraints are either:

1. Precedence constraints (between consecutive operations of a job): if operation i
must be executed before operation j, then sti+di<= stj

2. Resource constraints: if operations i and j require the same machine, then
sti+di<=stj or stj+dj<=sti

Most algorithms for CSP rely on the use of depth-first backtrack search. Forward
checking [Haralick and Elliot, 80] is a simple, yet powerful general purpose algorithm for
CSP. It traverses a search tree rooted with the initial problem. At each search state it selects
an unassigned variable and sequentially considers the assignment of its feasible values.
Each time a new value is assigned to the current variable, its effect is propagated toward
future variables removing those values that are not consistent with it. A deadend takes place
when an assignment propagation produces an empty domain. According to standard CSP
terminology, assigned and unassigned variables are called past and future variables,
respectively. We will refer to this formulation as CSP formulation 1.

Some authors have reported that the job-shop is more efficiently solved if it is
formulated establishing precedences between pairs of operations competing for the same
machine. Under this approach, pairs of operations requiring the same machine are CSP



variables. Each variable has two possible values in its domain, the two ways precedence
can be established. We denote by i → j the fact that operation i precedes operation j. Depth
first backtracking search traverses a binary tree. At each search state, it selects a pair of
operations competing for the same machine whose precedence has not yet been established,
and sequentially attempt the two possible orders (i.e.: i → j and j → i). After establishing
an order, its effect is propagated toward each operation updating their time interval with the
following rule:

if (k  → l): estl= max{estl, estk+dk}; lftk= min{lftk, lftl-dl}

until a fixed point is reached. A deadend takes place when esti+di becomes greater than lfti
for any operation i, then the algorithm backtracks to a previous decision. We will refer to
this formulation as CSP formulation 2.

Independently of what approach is used, algorithms do not determine the order in which
variables are selected and values are assigned. These orderings can have a dramatic effect
in average search efficiency; for this reason heuristic orderings are of great importance in
this context.

4.  Solving  the  Job-Shop  as  CSP

In this section we show that general CSP techniques may be valid for the job-shop. Our
claim is based on experimental results on a classical benchmark [Sadeh and Fox, 96]. The
problem set consists of 60 randomly generated problems. Each problem contains 10 jobs
and 5 resources. Each job has 5 operations. A controlling parameter was used to generate
problems in three different deadline ranges: wide (w), median (m) and tight (t). A second
parameter was used to generate problems with both 1 and 2 bottleneck resources.
Combining these parameters, 6 different categories of problems were defined, and 10
problems were generated for each category. The problem categories were carefully defined
to cover a variety of manufacturing scheduling circumstances. All problems have at least
one solution.

4.1.  CSP  Formulation  1.

The first experiment aimed to show that the CSP formulation 1 described in Section 3 (a
start time is associated to each operation at each search tree) using standard algorithms and
heuristics produces competitive results. We used plain forward checking combined with
support-based heuristics [Meseguer and Larrosa, 95; Larrosa and Meseguer, 95]. The only
modification made to the problem description given in Section 3 was that implicit
precedences between nonconsecutive operations of the same job were made explicit by
additional precedence constraints. Heuristics were defined using the concept of support
associated to each tree node:

1. The support that a feasible value t of a future variable i receives from another
future variables j is defined as,

s(i,t,j) =
� |D''j| �
� |D'j| �

  

where D'j is the current domain of variable j, and D''j is the set of values that
would remain feasible if value t were assigned to variable i.

2. The support that a feasible value t of a future variable i receives from all future



variables is,

s(i,t) = ∑
j �∈Future

�
� s(i,t,j) 

3. The support that a future variable i receives from all future variables is,

s(i) = ∑
t �∈Feasible

�
� s(i,t) 

The lowest support variable selection heuristic (ls) chooses the variable k  with minimum
support among future variables. The highest support value selection heuristic (hs) chooses
the value t with maximum support, among the feasible values of the current variable. In
previous experiments, support-based heuristics were found expensive to compute; for this
reason an approximation was proposed. We define the approximate support that a value t
of a variable i receives from another variable j as the support that it receives at the tree root

ap_s(i,t,j) =
� |D'j|�
� |Dj| �

  

where Dj is the initial domain and D'j is the set of values that would remain feasible if value
t were assigned to variable i at the root. Accordingly, we define value and variable supports
at each tree node as

ap_s(i,t) = ∑
j �∈Future

�
� ap_s(i,t,j) 

ap_s(i) = ∑
t �∈Feasible

�
� ap_s(i,t) 

Approximate heuristics (ap_ls and ap_hs) are defined similarly, but using approximate
supports. The computational benefit of approximate heuristics is that individual supports
ap_s(i,t,j) are only computed once before search starts.

Table 1 shows the results of running forward checking with exact and approximate
heuristics. For each case we give two columns: number of solved problems (with a search
limit of 500 visited nodes) and average search effort required as the number of visited
nodes. As it can be observed, the results are quite good. Using the exact heuristics (ls/hs)
51 problems are solved. If we use the approximate lowest support for variable selection
(ap_ls/hs), we still solve the same 51 problems. Interestingly, by approximating support
for variable selection average time of solving a problem decreases from about 300 seconds
in a Sun workstation to roughly 4 seconds. In addition, it should be noted that all solved
problems are solved without any backtracking. If approximate heuristics are used for
variable and value selection (ap_ls/ap_hs), only 39 problems can be solved. It illustrates
the importance of value selection heuristic accuracy for scheduling problems. These results
are compared with the corresponding ones of [Sadeh and Fox, 96], where the forward
checking algorithm with ORR/FSS heuristics solved 52 problems.



Table 1. Results of forward checking with support-based heuristics, compared with results of
forward checking with ORR/FSS heuristics of [Sadeh and Fox, 96].

4.2.  CSP  Formulation  2

The second experiment aimed to show that support-based heuristics are also general in the
sense that they can be effectively applied to different algorithmic approaches. We use the
CSP formulation 2 described in Section 3, where variables are pairs of operations and
values are their two possible orders. In particular, we use the PCP algorithm presented in
[Smith and Cheng, 93] combined to support-based heuristics. Unlike [Smith and Cheng,
93], our implementation allows backtracking when a deadend occurs.

Support-based heuristics are applied to this problem formulation in the following way.
At a given search node, each operation i has a time interval for its start time (sti ∈ D'i =
[esti, lfti-di]) determined by previous decisions and the propagation rule. If i and j are two
unordered operations competing for the same machine, we define the support that
establishing i → j receives from the problem as

s(i → j) = ∑
j �∈Operations

�
� � � |D''j| �

� |D'j| �
  

where D'k is the time interval [estk, lftk-dk] for operation k before deciding the order

between i and j, and D''k is the time interval [estk, lftk-dk] after deciding i → j and
propagating its effect.

With this definition, the lowest support variable selection heuristic for this algorithm
selects the pair of operations (i,j) with minimum sum of supports for the two possible
orderings,

mink,l {s(k  → l) + s(l → k)}
 In a similar way, the highest support value selection heuristic selects the ordering that
ordering that receives the highest support.

Table 2 shows the results of this experiment: 56 problems were solved with a search
limit of 1,000 nodes. All solved problem instances but one are solved without any
backtracking (225 visited nodes). In average, our algorithm requires about 13 seconds to
solve a problem. These results are compared to those of [Smith and Cheng, 93] where
PCP combined to slack-based heuristics solved 56 problem, too.

ls/hw ap_ls/hw ap_ls/ap_hw ORR/FSS
solved nodes solved nodes solved nodes solved nodes

w/1
w/2
m/1
m/2
t/1
t/2

10
9
9

10
6
7

50
50
50
51
50
50

10
9
9

10
6
7

50
50
50
50
50
50

9
8
5
7
4
6

55
116
53
71
50
52

10
10
8
9
7
8

52
50
64
57
68
61

sum 51 51 39 52



ls/hw slack-based
solved nodes solved nodes

w/1
w/2
m/1
m/2
t/1
t/2

10
10
10
10
10
6

225
225
225
231
225
225

10
10
10
10
10
6

225
225
225
225
225
225

sum 56 56

Table 2. Results of PCP with support-based heuristics, compared with results of PCP with
slack-based heuristics [Smith and Cheng, 93].

5.  Using  Discrepancy  Algorithms

Experimental results presented in the previous Section show that any heuristic (ORR/FSS,
slack-based, support-based) is not perfect and, in occasions, it may be wrong. When a
wrong advice is made early in the search tree, any depth-first-based search procedure has
to unsuccessfully traverse a large subtree without any solution. This is so because depth-
first is strongly committed to the first heuristic advices. Trying to solve this problem for the
job-shop, [Sadeh et al, 95] modified the forward checking algorithm adding an incomplete
backjumping heuristic: when the system starts thrashing, the algorithm backjumps all the
way to the first search state and simply tries the next best value. This approach renders the
algorithm incomplete, and it has been implemented with a parameter (the maximum number
of visited nodes between backjumps), which has to be adjusted to solve the whole
benchmark. Alternatively, [Smith and Cheng, 93] modified the slack-based heuristics
introducing a bias; this was implemented by two parameters n1 and n2, which should be
adjusted manually to achieve the heuristic formulation able to solve the whole benchmark.
In both cases, parameters are problem-dependent and they may change using a different
benchmark, so manual tuning is always required.

To decrease the degree of dependency of depth-first search with initial decisions in the
search tree, new search strategies have been recently proposed following the work of
[Harvey and Ginsberg, 95] and further developed by [Korf, 96; Meseguer, 97; Walsh,
97]. These new algorithms are based in the concept of discrepancy. Regarding CSP, a
search path has as many discrepancies as value assignments differing from the value
ordering heuristic first choice. A discrepancy-based algorithm is not strictly committed to
the first choices made early in the tree, which forces depth-first to search a sequence of
nested subproblems, but it searches in several subtrees corresponding to subproblems
which have little in common. This minimizes the negative performance impact of early
wrong decisions. In particular, limited discrepancy search (LDS, [Harvey and Ginsberg,
95]) is a complete backtracking algorithm that searches the nodes of the tree in increasing
order of discrepancies (i.e.: in its first iteration it searches all paths with less than 1
discrepancy, in its second iteration it searches all paths with less that 2 discrepancies, and
so on). LDS is easily adapted to algorithms used in Section 4 and combined with support-
based heuristics, producing complete procedures which are adaptable to problem difficulty,
so no manual tuning of parameters is required. In the following, we provide experimental



results of these combinations for the two CSP formulations introduced in Section 3.

5.1.  CSP  Formulation  1

Our third experiment aimed to show that the reason for failure in 9 problems of Section
4.1. is the combination of two factors: occasional wrong heuristic advice and depth first
commitment to early decisions. For this purpose, we combine LDS with forward checking
and support-based heuristics (ap_ls and hs). Table 3 presents the results of the experiment
where all problems are solved. 51 problems are solved with 0 discrepancies (and an
average CPU time of 4 seconds), 8 problems require 1 discrepancy (and 115 seconds on
average) and 1 problem requires 2 discrepancies (and 3,700 seconds). Tracing the
execution we could verify our conjecture, because solution paths had their discrepancies in
the first tree levels. As far as we know, this is the first paper reporting a complete
algorithm in which all problems are solved using a standard CSP formulation.

ap_ls/hw inc.  fc  ORR/FSS
solved nodes solved nodes

w/1
w/2
m/1
m/2
t/1
t/2

10
10
10
10
10
10

50
53
68
50

4,831
813

10
10
10
10
10
10

52
50
55
54
57
60

sum 60

Table 3. Results of LDS with forward checking and support-based heuristics, compared with
results of incomplete forward checking with ORR/FSS heuristics [Sadeh et al, 95].

5.2.  CSP  Formulation  2

Our fourth and last experiment combined LDS with the PCP algorithm and support-based
heuristics (Section 4.2.). Table 4 gives the results. Again, all problems are solved: 55
problems with 0 discrepancies (14 seconds on average), and 5 problems with 1
discrepancy (36 seconds on average).

ls/hw modif. slack-based
solved nodes

w/1
w/2
m/1
m/2
t/1
t/2

10
10
10
10
10
10

225
225
225
244
225
356

10
10
10
10
10
10

225
225
225
225
225
225

sum 60 60

Table 4. Results of LDS with PCP and support-based heuristics, compared with results of PCP
with modified slack-based heuristics [Smith and Cheng, 93].



6.  Conclusions

From this work we can conclude that search and CSP techniques motivated and developed
in a generic context can be effectively applied the job-shop problem. Regarding
performance, our generic approach has the same solving power than specific ones;
although it does not outperform specific methods in CPU time, its computational
requirements are quite reasonable. Regarding methodology, our approach is generic and it
does not include domain-dependent elements such as bias or parameters which have to be
manually  adjusted for each problem set. This makes our approach more robust and more
applicable to other problem instances. The solution proposed is a combination of three well
known elements in the constraint community: constraint propagation (by forward
checking), dynamic variable and value selection (by support-based heuristics) and early
mistakes avoidance (by discrepancy-based search). heuristic advice. By the modular
inclusion of each of these elements, we have assessed their relative importance and the role
that each plays in the construction of the solution. Each of these elements has an intrinsic
value for the search community and it has been independently analyzed and studied. This
provides our approach a higher level of understanding than specific methods, which
renders it more suitable for supporting the development of applications.
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