Abstract
This paper presents an object recognition methodology which uses a step-by-step discrimination process. This process is made possible by the use of a classification structure built over examples of the objects to recognize. Thus, our approach combines numerical vision (object recognition) with conceptual clustering, showing how the latter helps the former, giving another example of useful synergy among different AI techniques. It presents our application domain: the recognition of road signs, which must support semi-autonomous vehicles in their navigational task. The discrimination process allows appropriate actions to be taken by the recognizer with regard to the actual data it has to recognize the object from: light, angle, shading, etc., and with regard to its recognition capabilities and their associated cost. Therefore, this paper puts the emphasis on this multiple criteria adaptation capability, which is the novelty of our approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Li, Y., Saldanha, C. & Lalonde, M., (1996). Geomodeling: Georeferencing Real World Objects. In: Proceedings of Vision Interface 1996. May. Toronto. 71–76.
Sowa, J. F. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, 1984. 481 pages.
Mineau, G., (1991). Méthode de structuration par généralisation. Thèse de doctorat. Département d'informatique et de recherche opérationnelle. Université de Montréal.
Mineau, G.W. & Godin, R., (1995). Automatic Structuring of Knowledge Bases by Conceptual Clustering. In: IEEE Transactions on Knowledge and Data Engineering, volume 7, no 5. 824–829.
Godin, R., Mineau, G.W., Missaoui, R. & Mili, H., (1995). Méthodes d:, classification conceptuelle basées sur les treillis de Galois et applications. In: Revue d'Intelligence Artificielle, volume 9, no 2. 105–137.
Wille, R., (1982). Restructuring Lattice Theory: an Approach Based on Hierarchies of Concepts. In: I. Rival (Ed.), Ordered Sets. Dordrecht-Boston: Reidel. 445–470.
Dean, T., Angluin, D., Basye, K., Engelson, S., Kaelbling, L., Kokkekis, E., Maron, O., (1995). Inferring Finite Automata with Stochastic Output Functions and an Application to Map Learning. In: Machine Learning Journal, vol. 18. Kluwer Academic Publishers. 81–108.
Dorigo, M., (1995). ALECSYS and the AutonoMouse: Learning to control a real robot by distributed classifier systems. In: Machine Learning Journal, vol. 19. Kluwer Academic Publishers. 209–240.
Watanabe, L. & Yenamareddy, S., (1991). Decision Tree Induction of 3-D Manufacturing Features. In: Proceedings of the 8th International Workshop on Machine Learning. Morgan Kaufinann. 650–654.
Thint, M., Wang, P., (1990). Feature Extraction and Clustering of Tactile Impressions with Connectionnist Models. In: Proceedings of the 7th International Workshop on Machine Learning. Morgan Kaufinann. 253–258.
Segen, J., (1988). Learning Graph Models of Shape. In: Proceedings of the 5th International Workshop on Machine Learning. Morgan Kaufmann. 29–35.
Fayad, U. M., Weir, N. & Djorgovski, S., (1993). SKICAT: A Machine Learning System for Automated Cataloging of Large Scale Sky Surveys. In: Proceedings of the 10th International Workshop on Machine Learning. Morgan Kaufmann. 112–120.
Whitehead, S. D. & Ballard, D. H., (1991). Learning to Perceive and Act by Trial and Error. In: Machine Learning Journal, vol. 7, no 1. Kluwer Academic Publishers. 45–83.
Klingspor, V., Morick, K.J. & Rieger, A.D., (1996). Learning Concepts from Sensor Data of a Mobile Robot. In: Machine Learning Journal, vol. 23. Kluwer Academic Publishers. 305–332
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mineau, G.W., Lahboub, M., Beaulieu, JM. (1998). An object indexing methodology as support to object recognition. In: Mercer, R.E., Neufeld, E. (eds) Advances in Artificial Intelligence. Canadian AI 1998. Lecture Notes in Computer Science, vol 1418. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64575-6_41
Download citation
DOI: https://doi.org/10.1007/3-540-64575-6_41
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64575-7
Online ISBN: 978-3-540-69349-9
eBook Packages: Springer Book Archive