Skip to main content

Including qualitative knowledge in semiqualitative dynamical systems

  • 3 Formal Tools
  • Conference paper
  • First Online:
Methodology and Tools in Knowledge-Based Systems (IEA/AIE 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1415))

  • 4426 Accesses

Abstract

A new method to incorporate qualitative knowledge in semiqualitative systems is presented. In these systems qualitative knowledge may be expressed in their parameters, initial conditions and/or vector fields. The representation of qualitative knowledge is made by means of intervals, continuous qualitative functions and envelope functions.

A dynamical system is defined by differential equations with qualitative knowledge. This definition is transformed into a family of dynamical systems. In this paper the semiqualitative analysis is carried out by means of constraint satisfaction problems, using interval consistency techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dvorak D. Monitoring and diagnosis of continuous dynamic systems using semiquantitative simulation Ph.D. Dissertation, University of Texas. Tech. Report AI92-170 (1992)

    Google Scholar 

  2. Gasca R.M., Toro M., Ortega J.A., Propagación de restricciones integrando conocimiento cualitativo y cuantitativo Boletín de AEPIA núm 6 (1996) 23–30

    Google Scholar 

  3. Gasca R.M. Razonamiento y Simulación en Sistemas que integran conocimiento cualitativo y cuantitativo Ph.D. Thesis, Universidad de Sevilla (1998)

    Google Scholar 

  4. Hyvönen E. Constraint reasoning based on interval arithmetic. the tolerance propagation Artificial Intelligence no. 58 (1992) 71–112

    Google Scholar 

  5. Kay H., Kuipers B., Numerical behavior envelopes for qualitative models. Proc. 11th National Conf. on Artificial Intelligence (1993) 606–613

    Google Scholar 

  6. Kay H. Refining imprecise models and their behaviors Ph.D. Tesis, University of Texas (1996)

    Google Scholar 

  7. Kuipers B.J., Qualitative simulation, Artifical Inteligence 29, (1986) 289–338

    Article  MATH  MathSciNet  Google Scholar 

  8. Lee W.W., Kuipers B.J., A qualitative method to construct phase portraits, Proc. 11th National Conf. on Artificial Intelligence (1993) 614–619

    Google Scholar 

  9. Mavrovouniotis M.L., Stephanopoulos G. Formal order-of-magnitude reasoning Process Engineering Computer Chemical Engineering no. 12 (1988) 867–880

    Google Scholar 

  10. Ortega J.A., Gasca R.M., Toro M., Automatización del análisis y simulación de modelos cualitativos mediante restricciones Proc. VII Conf. Asoc. Española para Inteligencia Artificial, (1997) 85–94

    Google Scholar 

  11. Sacks E., Automatic qualitative analysis of dynamic systems using piecewise linear approximations, Artificial Intelligence 41 (1990) 313–364

    Article  MathSciNet  Google Scholar 

  12. Travé-Massuyś L., and Piera N., The order of magnitude models as qualitative algebras Proc. of 11th Int. Joint Conf. on Artificial Intelligence, Detroit MI (1989) 1261–1266

    Google Scholar 

  13. VanHentenryck P., McAllester D., Kapur D., Solving polynomial systems using a branch and prune algorithm. Tech. report CS-95-01 University of Providence (1995)

    Google Scholar 

  14. Vescovi M., Farquhar A., Iwasaki Y., Numerical interval simulation: combined qualitative and quantitative simulation to bound behaviors of non-monotonic systems, Proc. 14th Int. Joint Conf. on AI (1994) 1806–1812

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Angel Pasqual del Pobil Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Ortega, J.A., Gasca, R.M., Toro, M. (1998). Including qualitative knowledge in semiqualitative dynamical systems. In: Mira, J., del Pobil, A.P., Ali, M. (eds) Methodology and Tools in Knowledge-Based Systems. IEA/AIE 1998. Lecture Notes in Computer Science, vol 1415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64582-9_763

Download citation

  • DOI: https://doi.org/10.1007/3-540-64582-9_763

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64582-5

  • Online ISBN: 978-3-540-69348-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics