Abstract
A new method to incorporate qualitative knowledge in semiqualitative systems is presented. In these systems qualitative knowledge may be expressed in their parameters, initial conditions and/or vector fields. The representation of qualitative knowledge is made by means of intervals, continuous qualitative functions and envelope functions.
A dynamical system is defined by differential equations with qualitative knowledge. This definition is transformed into a family of dynamical systems. In this paper the semiqualitative analysis is carried out by means of constraint satisfaction problems, using interval consistency techniques.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dvorak D. Monitoring and diagnosis of continuous dynamic systems using semiquantitative simulation Ph.D. Dissertation, University of Texas. Tech. Report AI92-170 (1992)
Gasca R.M., Toro M., Ortega J.A., Propagación de restricciones integrando conocimiento cualitativo y cuantitativo Boletín de AEPIA núm 6 (1996) 23–30
Gasca R.M. Razonamiento y Simulación en Sistemas que integran conocimiento cualitativo y cuantitativo Ph.D. Thesis, Universidad de Sevilla (1998)
Hyvönen E. Constraint reasoning based on interval arithmetic. the tolerance propagation Artificial Intelligence no. 58 (1992) 71–112
Kay H., Kuipers B., Numerical behavior envelopes for qualitative models. Proc. 11th National Conf. on Artificial Intelligence (1993) 606–613
Kay H. Refining imprecise models and their behaviors Ph.D. Tesis, University of Texas (1996)
Kuipers B.J., Qualitative simulation, Artifical Inteligence 29, (1986) 289–338
Lee W.W., Kuipers B.J., A qualitative method to construct phase portraits, Proc. 11th National Conf. on Artificial Intelligence (1993) 614–619
Mavrovouniotis M.L., Stephanopoulos G. Formal order-of-magnitude reasoning Process Engineering Computer Chemical Engineering no. 12 (1988) 867–880
Ortega J.A., Gasca R.M., Toro M., Automatización del análisis y simulación de modelos cualitativos mediante restricciones Proc. VII Conf. Asoc. Española para Inteligencia Artificial, (1997) 85–94
Sacks E., Automatic qualitative analysis of dynamic systems using piecewise linear approximations, Artificial Intelligence 41 (1990) 313–364
Travé-Massuyś L., and Piera N., The order of magnitude models as qualitative algebras Proc. of 11th Int. Joint Conf. on Artificial Intelligence, Detroit MI (1989) 1261–1266
VanHentenryck P., McAllester D., Kapur D., Solving polynomial systems using a branch and prune algorithm. Tech. report CS-95-01 University of Providence (1995)
Vescovi M., Farquhar A., Iwasaki Y., Numerical interval simulation: combined qualitative and quantitative simulation to bound behaviors of non-monotonic systems, Proc. 14th Int. Joint Conf. on AI (1994) 1806–1812
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag
About this paper
Cite this paper
Ortega, J.A., Gasca, R.M., Toro, M. (1998). Including qualitative knowledge in semiqualitative dynamical systems. In: Mira, J., del Pobil, A.P., Ali, M. (eds) Methodology and Tools in Knowledge-Based Systems. IEA/AIE 1998. Lecture Notes in Computer Science, vol 1415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64582-9_763
Download citation
DOI: https://doi.org/10.1007/3-540-64582-9_763
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64582-5
Online ISBN: 978-3-540-69348-2
eBook Packages: Springer Book Archive