Skip to main content

dedale, a spatial constraint database

  • Spatial Database
  • Conference paper
  • First Online:
Database Programming Languages (DBPL 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1369))

Included in the following conference series:

Abstract

This paper presents a first prototype of a constraint database for spatial information, dedale. Implemented on top of the O2 DBMS, data is stored in an object-oriented framework, with spatial data represented using linear constraints over a dense domain. The query language is the standard OQL, with special functions for constraint solving and geometric operations.

A simple geographical application from the French Institute for Geography, IGN, is running on dedale. The data initially in vector mode was loaded into the database after a translation to constraint representation. Although it is too early to speak of performance since not all operations have been optimized yet, our experience with DEDALE demonstrates already the advantages of the constraint approach for spatial manipulation.

Work supported in part by TMR project Chorochronos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Abel and B.-C.Ooi, editors. Proc. Intl. Symp. on Large Spatial Databases (SSD). LNCS No. 692. Springer-Verlag, 1993.

    Google Scholar 

  2. F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an ObjectOriented Database System: The Story of O 2. Morgan Kaufmann, San Mateo, California, 1992.

    Google Scholar 

  3. La Base de Données Topographiques de l'I.G.N. Bulletin d'Information de l'I.G.N., No. 59, 1991.

    Google Scholar 

  4. A. Brodsky and V.E. Segal. The c3 constraint object-oriented database system: an overview. In Constraint Databases and Applications, Proc. second international workshop on Constraint Databases Systems (CDB97), Lecture Notes in Computer Science, pages 134–159, 1997.

    Google Scholar 

  5. R.G.G. Cattell, editor. The Object Database Standard ODMG-93. Morgan Kaufmann, San Francisco, California, 1994.

    Google Scholar 

  6. B. Chazelle and D.P. Dobkin. Optimal Convex Decomposition. In G.T. Toussaint, editor, Computational Geometry, pages 63–133. North Holland, 1985.

    Google Scholar 

  7. B. Chazelle. Triangulating a Simple Polygon in Linear Time. Discrete and Computational Geometry, 6:485–524, 1991.

    Google Scholar 

  8. E.F. Codd. A relational model of data for large shared data banks. Communications of ACM, 13:6:377–387, 1970.

    Google Scholar 

  9. M.J. Egenhofer and J. Herring, editors. Proc. Intl. Symp. on Large Spatial Databases (SSD). LNCS No. 951. Springer-Verlag, 1995.

    Google Scholar 

  10. A. Fournier and D.Y. Montuno. Triangulating simple polygons and equivalent problems. ACM Transactions on Graphics, 3:153–174, 1984.

    Google Scholar 

  11. M.R. Garey, D.S. Johnson, F.P. Preparata, and R.E. Tarjan. Triangulating a Simple Polygon. Information Processing Letter, 7(4):175–180, 1978.

    Google Scholar 

  12. S. Grumbach and Z. Lacroix. Computing queries on linear constraint databases. In Fifth Int. Workshop on Database Programming Languages, 1995.

    Google Scholar 

  13. S. Grumbach and J. Su. Dense order constraint databases. In 14th ACM Symp. on Principles of Database Systems, pages 66–77, San Jose, May 1995.

    Google Scholar 

  14. S. Grumbach and J. Su. Queries with arithmetical constraints. Theoretical Computer Science, 173, 1997. Invited to a special issue.

    Google Scholar 

  15. S. Grumbach, J. Su, and C. Tollu. Linear constraint query languages: Expressive power and complexity. In D. Leivant, editor, Logic and Computational Complexity, Indianapolis, 1994. Springer Verlag. LNCS 960.

    Google Scholar 

  16. R. Gueting. An Introduction to Spatial Database Systems. The VLDB Journal, 3(4), 1994.

    Google Scholar 

  17. S. Hertel and K. Mehlorn. Fast Triangulation of Simple Polygons. In Proc. Intl. Conf. on Foundations of Computer Theory, LNCS No. 158, pages 207–218. Springer-Verlag, 1983.

    Google Scholar 

  18. J.M. Keil. Decomposing a Polygon into Simpler Components. SIAM Journal of Computing, 14(4):799–817, 1985.

    Google Scholar 

  19. P. Kanellakis and D. Goldin. Constraint programming and database query languages. In Manuscript, 1994.

    Google Scholar 

  20. P. Kanellakis, G Kuper, and P. Revesz. Constraint query languages. In Proc. 9th ACM Symp. on Principles of Database Systems, pages 299–313, Nashville, 1990.

    Google Scholar 

  21. K. Lin, H.V. Jagadish, and Christos Faloutsos. The tv-tree-an index for high-dimensional data. VLDB Journal, 1994.

    Google Scholar 

  22. Peter Mayle. A Year in Provence. Knopf, New York, 1990.

    Google Scholar 

  23. S. Morehouse. The Architecture of ARC/INFO. In Proc. Intl. Symp. on Computer-Assisted Cartography (Auto-Carto 9), pages 266–277, 1989.

    Google Scholar 

  24. J. O'Rourke. Computational Geometry in C. Cambridge University Press, 1994.

    Google Scholar 

  25. J.-P. Peloux and P. Rigaux. A Loosely Coupled Interface to an ObjectOriented Geographic Database. In Proc. Intl. Conf. on Spatial Information Theory (COSIT), 1995.

    Google Scholar 

  26. F. Preparata and M. Shamos. Computational Geometry: An Introduction. Springer Verlag, 1985.

    Google Scholar 

  27. C.H. Papadimitriou, D. Suciu, and V. Vianu. Topological queries in spatial databases. In 15th ACM Symp. on Principles of Database Systems, Montréal, June 1996.

    Google Scholar 

  28. J. Paredaens, J. Van den Bussche, and D. Van Gucht.Towards a theory of spatial database queries. In Proc. 13th ACM Symp. on Principles of Database Systems, pages 279–288, 1994.

    Google Scholar 

  29. J. Paredaens, J. Van den Bussche, and D. Van Gucht. First-order queries on finite structures over the reals. In Proceedings 10th IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, 1995.

    Google Scholar 

  30. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

    Google Scholar 

  31. R. Seidel. A Simple and Fast Incremental Randomized Algorithm for Computing Trapezoidal Decompositions and for Triangulating Polygons. Computational Geometry, 1(1), 1991.

    Google Scholar 

  32. M. Scholl, G. Grangeret, and X. Rehse. Point and window queries with linear spatial indices: An evaluation with O2. Technical Report RRC-96-09; ftp://ftp.cnam.fr/pub/CNAM/cedric/tech-reports/RRC-96-09.ps.Z, Cedric Lab, CNAM, Paris, 1996.

    Google Scholar 

  33. R.E. Tarjan and C.J. van Wyk. An O(n log log n) Time Algorithm for Triangulating a Simple Polygon. SIAM Journal of Computing, 17(1):143–178, 1988.

    Google Scholar 

  34. V.Gaede and O. Guenther. Multidimensional Access Methods. Technical Report TR-96-043, ICSI, 1996.

    Google Scholar 

  35. L. Vandeurzen, M. Gyssens, and D. Van Gucht. On the desirability and limitations of linear spatial database models. In Advances in Spatial Databases, 4th Int. Symp., SSD'95, pages 14–28. Springer, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sophie Cluet Rick Hull

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grumbach, S., Rigaux, P., Scholl, M., Segoufin, L. (1998). dedale, a spatial constraint database. In: Cluet, S., Hull, R. (eds) Database Programming Languages. DBPL 1997. Lecture Notes in Computer Science, vol 1369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64823-2_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-64823-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64823-9

  • Online ISBN: 978-3-540-68534-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics