Skip to main content

Rough Classifiers Sensitive to Costs Varying from Object to Object

  • Conference paper
  • First Online:
Rough Sets and Current Trends in Computing (RSCTC 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1424))

Included in the following conference series:

  • 769 Accesses

  • 17 Citations

Abstract

We present modification of the ProbRough algorithm for inducing decision rules from data. The generated rough classifiers are now sensitive to costs varying from object to object in the training data. The individual costs are represented by new cost attributes defined for every single decision. In this approach the decision attribute is dispensable. Grouping of objects and defining prior probabilities are made on the basis of the group attribute. Values of this attribute may have no relations with the decisions. The proposed approach is a generalization of the methodology incorporating the cost matrix. Behavior of the algorithm is illustrated on the data concerning the credit evaluation task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ezawa, K. J., Singh, M., Norton, S. W. (1996). Learning goal oriented networks for telecommunications risk management. Proceedings of the 13th International Conference on Machine Learning, Bari, Italy, July 3–6, 1996. Avaliable at ftp://ftp.cis.upenn.edu/pub/msingh/ml96_alt.ps.Z

  2. Pawlak, Z. (1991). Rough Sets: Theoretical Aspects of Reasoning About Data. Dordrecht: Kluwer Academic Publishers.

    MATH  Google Scholar 

  3. Pazzani, M., Merz, C., Murphy, P., Ali, K., Hume, T., Brunk, C. (1994). Reducing misclassification costs. Proceedings of the 11th International Conference on Machine Learning (pp. 217–225). Morgan Kaufmann.

    Google Scholar 

  4. Piasta, Z., Lenarcik, A. (1996), Rule induction with probabilistic rough classifiers. ICS Research Report 24/96, Warsaw University of Technology, to appear in Machine Learning.

    Google Scholar 

  5. Piasta, Z., Lenarcik, A. (1998), Learning rough classifiers from large databases with missing values. In: L. Polkowski, A. Skowron (eds): Rough Sets in Knowledge Discovery. Physica-Verlag (Springer), forthcoming.

    Google Scholar 

  6. Provost, F., Fawcett, T. (1997). Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions. Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (KDD-97), Huntington Beach, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lenarcik, A., Piasta, Z. (1998). Rough Classifiers Sensitive to Costs Varying from Object to Object. In: Polkowski, L., Skowron, A. (eds) Rough Sets and Current Trends in Computing. RSCTC 1998. Lecture Notes in Computer Science(), vol 1424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69115-4_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-69115-4_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64655-6

  • Online ISBN: 978-3-540-69115-0

  • eBook Packages: Springer Book Archive

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics