Skip to main content

Spatial Reasoning with Topological Information

  • Chapter
  • First Online:
Spatial Cognition

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1404))

Abstract

This chapter summarizes our ongoing research on topological spatial reasoning using the Region Connection Calculus. We are addressing different questions and problems that arise when using this calculus. This includes representational issues, e.g., how can regions be represented and what is the required dimension of the applied space. Further, it includes computational issues, e.g., how hard is it to reason with the calculus and are there efficient algorithms. Finally, we also address cognitive issues, i.e., is the calculus cognitively adequate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. James F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832–843, November 1983.

    Article  MATH  Google Scholar 

  2. Brandon Bennett. Spatial reasoning with propositional logic. In J. Doyle, E. Sandewall, and P. Torasso, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the 4th International Conference, pages 51–62, Bonn, Germany, May 1994. Morgan Kaufmann.

    Google Scholar 

  3. Brandon Bennett. Modal logics for qualitative spatial reasoning. Bulletin of the IGPL, 4(1), 1995.

    Google Scholar 

  4. Brian F. Chellas. Modal Logic: An Introduction. Cambridge University Press, Cambridge, UK, 1980.

    MATH  Google Scholar 

  5. Anthony G. Cohn. Qualitative spatial representation and reasoning techniques. In G. Brewka, C. Habel, and B. Nebel, editors, KI-97: Advances in Artificial Intelligence, volume 1303 of Lecture Notes in Computer Science, pages 1–30, Freiburg, Germany, 1997. Springer-Verlag.

    Google Scholar 

  6. Max J. Egenhofer. Reasoning about binary topological relations. In O. Günther and H.-J. Schek, editors, Proceedings of the Second Symposium on Large Spatial Databases, SSD’91, volume 525 of Lecture Notes in Computer Science, pages 143–160. Springer-Verlag, Berlin, Heidelberg, New York, 1991.

    Google Scholar 

  7. Melvin C. Fitting. Basic modal logic. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Programming — Vol. 1: Logical Foundations, pages 365–448. Oxford, Clarendon Press, 1993.

    Google Scholar 

  8. Michael R. Garey and David S. Johnson. Computers and Intractability—A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

    MATH  Google Scholar 

  9. Michelangelo Grigni, Dimitris Papadias, and Christos Papadimitriou. Topological inference. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, pages 901–906, Montreal, Canada, August 1995.

    Google Scholar 

  10. Andrzej Grzegorczyk. Undecidability of some topological theories. Fundamenta Mathematicae, 38:137–152, 1951.

    MathSciNet  Google Scholar 

  11. L. Henschen and L. Wos. Unit refutations and Horn sets. Journal of the Association for Computing Machinery, 21:590–605, 1974.

    MATH  MathSciNet  Google Scholar 

  12. Markus Knauff, Reinhold Rauh, and Jochen Renz. A cognitive assessment of topological spatial relations: Results from an empirical investigation. In Proceedings of the 3rd International Conference on Spatial Information Theory (COSIT’97), volume 1329 of Lecture Notes in Computer Science, pages 193–206, 1997.

    Google Scholar 

  13. Markus Knauff, Reinhold Rauh, and Christoph Schlieder. Preferred mental models in qualitative spatial reasoning: A cognitive assessment of Allen’s calculus. In Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society, pages 200–205, Mahwah, NJ, 1995. Lawrence Erlbaum Associates.

    Google Scholar 

  14. Markus Knauff, Reinhold Rauh, Christoph Schlieder, and Gerhard Strube. Mental models in spatial reasoning. In this volume, 1998.

    Google Scholar 

  15. Peter Ladkin and Alexander Reinefeld. Fast algebraic methods for interval constraint problems. Annals of Mathematics and Artificial Intelligence, 19(3,4), 1997.

    Google Scholar 

  16. Alan K. Mackworth and Eugene C. Freuder. The complexity of some polynomial network consistency algorithms for constraint satisfaction problems. Artificial Intelligence, 25:65–73, 1985.

    Article  Google Scholar 

  17. Bernhard Nebel and Hans-Jürgen Bürckert. Reasoning about temporal relations: A maximal tractable subclass of Allen’s interval algebra. Journal of the Association for Computing Machinery, 42(1):43–66, January 1995.

    MATH  MathSciNet  Google Scholar 

  18. Bernhard Nebel. Computational properties of qualitative spatial reasoning: First results. In I. Wachsmuth, C.-R. Rollinger, and W. Brauer, editors, KI-95: Advances in Artificial Intelligence, volume 981 of Lecture Notes in Computer Science, pages 233–244, Bielefeld, Germany, 1995. Springer-Verlag.

    Google Scholar 

  19. Bernhard Nebel. Solving hard qualitative temporal reasoning problems: Evaluating the efficiency of using the ORD-Horn class. CONSTRAINTS, 3(1):175–190, 1997.

    Article  MathSciNet  Google Scholar 

  20. David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based on regions and connection. In B. Nebel, W. Swartout, and C. Rich, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the 3rd International Conference, pages 165–176, Cambridge, MA, October 1992. Morgan Kaufmann.

    Google Scholar 

  21. Jochen Renz. A canonical model of the Region Connection Calculus. In Principles of Knowledge Representation and Reasoning: Proceedings of the 6th International Conference, Trento, Italy, June 1998.

    Google Scholar 

  22. Jochen Renz and Bernhard Nebel. On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the Region Connection Calculus. In Proceedings of the 15th International Joint Conference on Artificial Intelligence, pages 522–527, Nagoya, Japan, August 1997. Technical Report with full proofs available at http://www.informatik.uni-freiburg.de/~sppraum.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Renz, J., Nebel, B. (1998). Spatial Reasoning with Topological Information. In: Freksa, C., Habel, C., Wender, K.F. (eds) Spatial Cognition. Lecture Notes in Computer Science(), vol 1404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69342-4_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-69342-4_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64603-7

  • Online ISBN: 978-3-540-69342-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics