Skip to main content

A Taxonomy of Spatial Knowledge for Navigation and its Application to the Bremen Autonomous Wheelchair

  • Chapter
  • First Online:
Spatial Cognition

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1404))

Abstract

A new taxonomy is proposed that relates different navigational behaviors in a hierarchical and compositional way. Elementary navigation tactics are combined to tactical navigation in routes; land-marks in space are contrasted to routemarks in networks of passages. Survey knowledge comes in at the level of strategic navigation. The Bremen Autonomous Wheelchair is then presented as a vehicle for experimentation in robotics, both to model biologically plausible navigational behaviors and to develop efficient navigational mechanisms for a technical application. The implementation on the autonomous system is based on the use of basic behaviors and the identification of routemarks. The actual recognition of artificial routemarks is described and early results of the current work on the identification of natural 3-D marks are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal, J. K. and Nandhakumar, N. (1988). On the computation of motion from sequences of images — a review. In Proc. of the IEEE, volume 76, pages 917–935.

    Article  Google Scholar 

  • Aloimonos, Y., Rivlin, E., and Huang, L. (1993). Designing visual systems: Purposive navigation. In Y. Aloimonos, editor, Active Perception. Lawrence Erlbaum.

    Google Scholar 

  • Barkowsky, T., Freksa, C., Berendt, B., and Kelter, S. (1997). Aspektkarten-Integriert räumlich-symbolische Repräsentationsstrukturen. In C. Umbach, M. Grabski, and R. Hörnig, editors, Perspektive in Sprache und Raum, Wiesbaden. Deutscher Universitätsverlag. To appear.

    Google Scholar 

  • Barron, J. (1984). A survey of approaches for determining optic flow, environmental layout and egomotion. In Tech. Report RBCV-TR-84-5, University of Toronto. Dept. of Computer Science.

    Google Scholar 

  • Berendt, B., Barkowsky, T., Freksa, C., and Kelter, S. (1998). Spatial representation with aspect maps. This volume.

    Google Scholar 

  • Cartwright, B. A. and Collet, T. S. (1982). How honey bees use landmarks to guide their return to a food source. In Nature, volume 295, pages 560–564.

    Article  Google Scholar 

  • Cartwright, B. A. and Collet, T. S. (1983). Landmark learning in bees. Journal of Comparative Physiology A, 151, 521–543.

    Article  Google Scholar 

  • Cartwright, B. A. and Collet, T. S. (1987). Landmark maps for honeybees. In Biological Cybernetics, volume 57, pages 85–93.

    Article  Google Scholar 

  • Collet, T. S. and Baron, J. (1994). Biological compasses and the coordinate frame of landmark memories in honeybees. In Nature, volume 368, pages 137–140.

    Article  Google Scholar 

  • Collet, T. S. and Kelber, A. (1988). The retrieval of visuo-spatial memories in honeybees. Journal of Comparative Physiology A, 163, 145–150.

    Article  Google Scholar 

  • Collet, T. S., Cartwright, B. A., and Smith, B. A. (1986). Landmarks learning and visuo-spatial memories in gerbils. Journal of Comparative Physiology A, 158, 835–851.

    Article  Google Scholar 

  • Dyer, F. C. (1991). Bees acquire route-based memories but not cognitive maps in familiar landscape. In Animal Behavior, volume 41, pages 239–246.

    Article  Google Scholar 

  • Franz, M. O., Schölkopf, B., and Bülthoff, H. H. (1997a). Homing by parameterized scene matching. In Proc. 4th Europ. Conf. on Artificial Life. To appear.

    Google Scholar 

  • Franz, M. O., Schölkopf, B., Georg, P., Mallot, H. A., and Bülthoff, H. H. (1997b). Learning view graphs for robot navigation. In W. L. Johnson, editor, Proc. 1st Int. Conf. on Autonomous Agents, pages 138–147, New York. ACM Press.

    Chapter  Google Scholar 

  • Gallistel, C. R. (1990). The organization of learning. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Gillner, S. and Mallot, H. A. (1997). Navigation and acquisition of spatial knowledge in a virtual maze. Technical Report 45, Max-Planck-Institut für biologische Kybernetik, Tübingen.

    Google Scholar 

  • Gould, J. L. (1986). The locale map of honeybees: Do insects have a cognitive map? In Science, volume 234, pages 861–863.

    Article  Google Scholar 

  • Heeger, D. J. and Jepson, A. J. (1992). Subspace methods for recovering rigid motion i: Algorithm and implementation. In Int. J. of Computer Vision, volume 7:2, pages 95–117.

    Article  Google Scholar 

  • Herrmann, T., Schweizer, K., Janzen, G., and Katz, S. (1998). The effect of route direction and its constraints. This volume.

    Google Scholar 

  • Herwig, C. (1996). Visual motion processing for active observers. Ph.D. thesis. In B. Krieg-Brückner, G. Roth, and H. Schwegler, editors, ZKW-Bericht, number 1/96 in ISSN 0947-0204, Universität Bremen. Zentrum für Kognitionswissenschaften.

    Google Scholar 

  • Jörg, K.-W., v. Puttkamer, E., and Richstein, H.-J. (1993). Integration und Fusion heterogener Multisensorinformation zur geometrischen Weltmodellierung für einen Autonomen Mobilen Roboter. In G. Schmidt, editor, Autonome Mobile Systeme, volume 9, pages 287–298, Technische Universität München.

    Google Scholar 

  • Kollmann, J., Lankenau, A., Bühlmeier, A., Krieg-Brückner, B., and Röfer, T. (1997). Navigation of a kinematically restricted wheelchair by the parti-game algorithm. In Spatial Reasoning in Mobile Robots and Animals, pages 35–44, Manchester University. AISB-97 Workshop.

    Google Scholar 

  • Krieg-Brückner, B. (1998). A taxonomie of spatial knowledge for navigation. In U. Schmid and F. Wysotzki, editors, Qualitative and Quantitative Approaches to Spatial Inference and the Analysis of Movements, number 98-2 in Technical Report, Technische Universität Berlin. Computer Science Department.

    Google Scholar 

  • Kuipers, B. (1998). A hierarchy of qualitative representations for space. This volume.

    Google Scholar 

  • Mittelstaedt, H. and Mittelstaedt, M.-L. (1982). Homing by path integration. In F. Papi and H. G. Wallraff, editors, Avian Navigation, pages 290–297.

    Google Scholar 

  • Moore, A. and Atkeson, C. (1995). The parti-game algorithm for variable resolution reinforcement learning in multidimensional state-spaces. In Machine Learning, volume 21, pages 199–233, Boston. Kluwer Academic Publishers.

    Google Scholar 

  • Müller, M. and Wehner, R. (1988). Path integration in desert ants, cataglyphis fortis. In Proc. Natl. Acad. Sci. USA, volume 85, pages 5287–5290.

    Article  Google Scholar 

  • Nehmzow, U. (1995). Animal and robot navigation. In Robotics and Autonomous Systems, volume 15:1–2, pages 71–81.

    Article  Google Scholar 

  • Poucet, B. (1993). Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. In Psychological Review, volume 100, pages 163–182.

    Article  Google Scholar 

  • Röfer, T. (1995a). Image based homing using a self-organizing feature map. In F. Fogelman-Soulie and P. Gallinari, editors, Proc. Int. Conf. Artificial Neural Networks, volume 1, pages 475–480. EC2 & Cie.

    Google Scholar 

  • Röfer, T. (1995b). Navigation mit eindimensionalen 360° Bildern. In R. Dillmann, U. Rembold, and T. Lüth, editors, Autonome Mobile Systeme, volume 10 of Informatik aktuell, pages 193–202, Berlin, Heidelberg, New York. Springer.

    Google Scholar 

  • Röfer, T. (1997). Controlling a wheelchair with image-based homing. In Spatial Reasoning in Mobile Robots and Animals, pages 66–75, Manchester University. AISB-97 Workshop.

    Google Scholar 

  • Röfer, T. (1998). Panoramic Image Processing and Route Navigation. Ph.D. thesis, Universität Bremen. To appear.

    Google Scholar 

  • Rossel, S. and Wehner, R. (1986). Polarization vision in bees. In Nature, volume 323, pages 128–131.

    Article  Google Scholar 

  • Schölkopf, B. and Mallot, H. A. (1995). View-based cognitive mapping and planning. In Adaptive Behavior, volume 3, pages 311–348.

    Article  Google Scholar 

  • Scholl, M. J. (1987). Cognitive maps as orienting schemata. Journal of Experimental Psychology, 13:4, 615–628.

    Google Scholar 

  • Schweizer, K. and Janzen, G. (1996). Zum Einuß der Erwerbssituation auf die Raumkognition: Mentale Repräsentation der Blickpunktsequenz bei räumlichen Anordnungen. In Sprache und Kognition, volume 15:4, pages 217–233.

    Google Scholar 

  • Siems, U., Herwig, C., and Röfer, T. (1994). Simrobot-Ein Programm zur Simulation sensorbestückter Agenten in einer dreidimensionalen Umwelt. In B. Krieg-Brückner, G. Roth, and H. Schwegler, editors, ZKW-Bericht, number 1/94 in ISSN 0947-0204, Universität Bremen. Zentrum für Kognitionswissenschaften. Also: http://www.tzi.org/~simrobot.

  • Tolman, E. C. (1948). Cognitive maps in rats and men. In Psychological Review, volume 55, pages 189–208.

    Article  Google Scholar 

  • Trullier, O., Wiener, S. I., Bertholz, A., and Meyer, J.-A. (1997). Biogically based artificial navigation systems: Review and prospects. In Progress in Neurobiology, volume 51, pages 483–544. Pergamon.

    Article  Google Scholar 

  • v. Frisch, K. (1967). The dance language and orientation of bees. Oxford University Press, London.

    Google Scholar 

  • v. Helmholtz, H. (1909). Handbuch der Physiologischen Optik. 3rd edn. Verlag von Leopold Voss, Hamburg.

    Google Scholar 

  • Verri, A. and Poggio, T. (1987). Against quantitative optical flow. In Proc. 1st IEEE Int. Conf. Computer Vision, pages 171–180.

    Google Scholar 

  • Wehner, R. (1983). Celestial and terrestial navigation: Human strategies — insect strategies. In F. Huber and H. Markl, editors, Neuroethology and Behavioural Physiology, pages 366–381, Berlin, Heidelberg, New York. Springer.

    Google Scholar 

  • Wehner, R. and Menzel, R. (1990). Do insects have cognitive maps? In Ann. Rev. Neurosci., volume 13, pages 403–414.

    Google Scholar 

  • Werner, S., Krieg-Brückner, B., Mallot, H. A., Schweizer, K., and Freksa, C. (1997). Spatial cognition: The role of landmark, route, and survey knowledge in human and robot navigation. In Informatik’ 97 — Informatik als Innovationsmotor, Informatik aktuell, Berlin, Heidelberg, New York. Springer.

    Google Scholar 

  • Wiltschko, R. (1997). The navigation system of birds. In Spatial Reasoning in Mobile Robots and Animals, pages 5–14, Manchester University. AISB-97 Workshop.

    Google Scholar 

  • Wiltschko, R. and Wiltschko, W. (1995). Magnetic Orientation in Animals. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Wittmann, T. (1996). Insektennavigation: Modelle und Simulationen. Ph.D. thesis, Universität Bremen. Berichte aus der Biologie. Shaker, Aachen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krieg-Brückner, B., Röfer, T., Carmesin, HO., Müller, R. (1998). A Taxonomy of Spatial Knowledge for Navigation and its Application to the Bremen Autonomous Wheelchair. In: Freksa, C., Habel, C., Wender, K.F. (eds) Spatial Cognition. Lecture Notes in Computer Science(), vol 1404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69342-4_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-69342-4_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64603-7

  • Online ISBN: 978-3-540-69342-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics