Skip to main content

Spatial orientation in virtual environments: Background considerations and experiments

  • Chapter
  • First Online:
Spatial Cognition

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1404))

Abstract

Spatial orientation strongly relies on visual and whole-body information available while moving through space. As virtual environments allow to isolate the contribution of visual information from the contribution of whole-body information, they are an attractive methodological means to investigate the role of visual information for spatial orientation. Using an elementary spatial orientation task (triangle completion) in a simple virtual environment we studied the effect of amount of simultaneously available visual information (geometric field of view) and triangle layout on the integration and uptake of directional (turn) and distance information under visual simulation conditions. While the amount of simultaneously available visual information had no effect on homing errors, triangle layout substantially affected homing errors. Further analysis of the observed homing errors by means of an Encoding Error Model revealed that subjects navigating under visual simulation conditions had problems in accurately taking up and representing directional (turn) information, an effect which was not observed in experiments reported in the literature from similar whole-body conditions. Implications and prospects for investigating spatial orientation by means of virtual environments are discussed considering the present experiments as well as other work on spatial cognition using virtual environments.

Send correspondence to Mark May.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfano, P. L. & Michel, G. F. (1990). Restricting the field of view: Perceptual and performance effects. Perceptual and Motor Skills, 70, 35–45.

    Article  Google Scholar 

  • Batschelet, E. (1981). Circular statistics in biology. London, New York: Academic Press.

    MATH  Google Scholar 

  • Beer, J. M. A. (1993). Perceiving scene layout through aperture during visually simulated self-motion. Journal of Experimental Psychology: Human Perception and Performance, 19, 1066–1081.

    Article  Google Scholar 

  • Benhamou, S., Sauvé, J. P., & Bovet, P. (1990). Spatial memory in large scale movements: Efficiency and limitations of the egocentric coding process. Journal of Theoretical Biology, 145, 1–12.

    Article  MathSciNet  Google Scholar 

  • Bliss, J. P., Tidwell, P. D., & Guest, M. (1997). The effectiveness of virtual reality for administering spatial navigation training to firefighters. Presence, 6(1), 73–86.

    Google Scholar 

  • Brauer, W., Freksa, C., Habel, C., & Wender, K. F. (1995). Raumkognition: Repräsentation und Verarbeitung räumlichen Wissens. Vorschlag zur Einrichtung eines DFG-Schwerpunktprogrammes.

    Google Scholar 

  • Cutting, J. E. (1986). Perception with an eye for motion. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cutting, J. E. (1997). How the eye measures reality and virtual reality. Behavior Research Methods, Instruments, & Computers, 29, 27–36.

    Google Scholar 

  • Distler, H. & Bülthoff, H. (1996). Psychophysical experiments and virtual environments. Poster presented at the virtual reality world 1996.

    Google Scholar 

  • Durlach, N. I. & Mavor, A. S. (1995). Virtual reality. Scientific and technological challenges. Washington, D.C.: National Academy Press.

    Google Scholar 

  • Ellis, S. R. (1991). Pictorial communication: Pictures and the synthetic universe. In S. R. Ellis, M. K. Kaiser, & A. C. Grunwald (Eds.), Pictorial communication in virtual and real environments (pp. 22–40). London: Taylor & Francis.

    Google Scholar 

  • Ellis, S. R. (1994). What are virtual environments? IEEE Computer Graphics & Applications, 17–22.

    Google Scholar 

  • Fujita, N., Klatzky, R. L., Loomis, J. M., & Golledge, R. G. (1993). The encoding-error model of pathway completion without vision. Geographical Analysis, 25, 295–314.

    Article  Google Scholar 

  • Gallistel, C. R. (1990a). Representations in animal cognition: An introduction. Cognition, 37, 1–22.

    Article  Google Scholar 

  • Gallistel, C. R. (1990b). The organization of learning. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton-Mifflin.

    Google Scholar 

  • Gillner, S. & Mallot, H. A. (1997). Navigation and acquisition of spatial knowledge in a virtual maze. Max-Planck-Instiut für bilogische Kybernetik, Technical Report, 45.

    Google Scholar 

  • Golledge, R.G., Klatzky, R.L., & Loomis, J.L. (1996). Cognitive mapping and wayfinding by adults without vision. In J. Portugali (Ed.), The construction of cognitive maps (pp. 215–246). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Haber, L., Haber, R. N., Penningroth, S., Novak, N., & Radgowski, H. (1993). Comparison of nine methods of indicating the direction to objects: Data from blind adults. Perception, 22, 35–47.

    Article  Google Scholar 

  • Henry, D. & Furness, T. (1993). Spatial perception in virtual environments. Proceedings IEEE Virtual Reality Annual International Symposium (VRAIS), Seattle, WA, 33–40.

    Google Scholar 

  • Johansson, G. & Börjesson, E. (1989). Toward a new theory of vision studies in wide-angle space perception. Ecological Psychology, 1, 301–331.

    Article  Google Scholar 

  • Kalawsky, R. S. (1993). The science of virtual reality and virtual environments. New York: Addison-Wesley.

    Google Scholar 

  • Klatzky, R. L., Loomis, J. M., & Golledge, R. G. (1997). Encoding spatial representations through nonvisually guided locomotion: Tests of human path integration. In D. Medin (Ed.), The Psychology of Learning and Motivation (Vol. 37, pp. 41–84). San Diego, CA: Academic Press.

    Google Scholar 

  • Klatzky, R. L., Loomis, J. M., Golledge, R. G., Cicinelli, J. G., Doherty, S., & Pellegrino, J. W. (1990). Acquisition of route and survey knowledge in the absence of vision. Journal of Motor Behavior, 22, 19–43.

    Google Scholar 

  • Kozak, J. J., Hancock, P. A., Arthur, E. J., & Chrysler, S. T. (1993). Transfer of training from virtual reality. Ergonomics, 36, 777–784.

    Article  Google Scholar 

  • Levine, M. (1982). You-are-here maps: Psychological considerations. Environment and Behavior, 14, 221–237.

    Article  Google Scholar 

  • Liu, A., Tharp, G., French, L., Lai, S., & Stark, L. (1993). Some of what one needs to know about using head-mounted displays to improve teleoperator performance. IEEE Transactions on Robotics and Automation, 9, 638–648.

    Article  Google Scholar 

  • Loomis, J. M., DaSilva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18, 906–921.

    Article  Google Scholar 

  • Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., & Fry, P. A. (1993). Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal of Experimental Psychology: General, 122, 73–91.

    Article  Google Scholar 

  • Maurer, R. & Séguinot, V. (1995). What is modelling for? A critical review of the models of path integration. Journal of Theoretical Biology, 175, 457–475.

    Article  Google Scholar 

  • May, M. (1996). Cognitive and embodied modes of spatial imagery. Psychologische Beiträge, 38, 418–434.

    Google Scholar 

  • May, M., Péruch, P., & Savoyant, A. (1995). Navigating in a virtual environment with map-acquired knowledge: Encoding and alignment effects.. Ecological Psychology, 7, 21–36.

    Article  Google Scholar 

  • Nadel, L. (1990). Varieties of spatial cognition. Psychobiological considerations. Annals of the New York Academy of Sciences, 608, 613–636.

    Article  Google Scholar 

  • Neale, D. C. (1996). Spatial perception in desktop virtual environments. In: Proceedings of the 40th Annual Meeting of the Human Factors and Ergonomics Society. Santa Monica: Human Factors Society.

    Google Scholar 

  • O’Keefe, J. & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press.

    Google Scholar 

  • Péruch, P., May, M., & Wartenberg, F. (1997). Homing in virtual environments: Effects of field of view and path-layout. Perception, 26, 301–311.

    Article  Google Scholar 

  • Péruch, P., Vercher, J.-L., & Gauthier, G. M. (1995). Acquisition of spatial knowledge through visual exploration of simulated environments. Ecological Psychology, 7, 1–20.

    Article  Google Scholar 

  • Pimentel, K. & Teixeira, K. (1993). Virtual reality. Through the new looking glass. New York: McGraw-Hill.

    Google Scholar 

  • Poucet, B. (1993). Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological Review, 100, 163–182.

    Article  Google Scholar 

  • Presson, C. C. & Montello, D. R. (1994). Updating after rotational and translational body movements: Coordinate structure of perspective space. Perception, 23, 1447–1455.

    Article  Google Scholar 

  • Rieser, J. J. (1989). Access to knowledge of spatial structure at novel points of observation. Journal of Experimental Psychology: Learning, Memory and Cognition, 15, 1157–1165.

    Article  Google Scholar 

  • Rieser, J. J. & Garing, A. E. (1994). Spatial orientation. Encyclopedia of human behavior, 4, 287–295.

    Google Scholar 

  • Rieser, J. J., Garing, A. E., & Young, M. F. (1994). Imagery, action and young children’s spatial orientation: It’s not being there that counts, it’s what one has in mind. Child Development, 65, 1254–1270.

    Article  Google Scholar 

  • Rieser, J. J., Guth, D. A., & Hill, E. W. (1986). Sensitivity to perceive structure while walking without vision. Perception, 15, 173–188.

    Article  Google Scholar 

  • Rieser, J. J., Hill, E. W., Talor, C. R., Bradfield, A., & Rosen, S. (1992). Visual experience, visual field size, and the development of nonvisual sensitivity to spatial structure of outdoor neighborhoods explored by walking. Journal of Experimental Psychology: General, 121, 210–221.

    Article  Google Scholar 

  • Ruddle, R. A., Payne, S. J., & Jones, D. M. (1997). Navigating buildings in “desk-top” virtual environments: Experimental investigations using extended navigational experience. Journal of Experimental Psychology: Applied, 3, 143–159.

    Article  Google Scholar 

  • Schölkopf, B. & Mallot, H. A. (1995). View-based cognitive mapping and path planning. Adaptive Behavior, 3, 311–348.

    Article  Google Scholar 

  • Sedgwick, H. A. (1982). Visual modes of spatial orientation. In M. Potegal (Ed.), Spatial abilities. Development and physiological foundations (pp. 3–33). New York: Academic Press.

    Google Scholar 

  • Sedgwick, H. A. (1986). Space perception. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of human perception and performance: Vol. 1 Sensory processes and perception (pp. 21.1–21.57). New York: Wiley.

    Google Scholar 

  • Sholl, M. J. (1996). From visual information to cognitive maps. In J. Portugali (Ed.), The construction of cognitive maps (Vol. 2, pp. 157–186). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Strelow, E. R. (1985). What is needed for a theory of mobility: Direct perception and cognitive maps-lessons from the blind. Psychological Review, 92, 226–248.

    Article  Google Scholar 

  • Thinus-Blanc, C. & Gaunet, F. (1997). Representation of space in blind persons: Vision as a spatial sense? Psychological Bulletin, 121, 20–42.

    Article  Google Scholar 

  • Thorndyke, P. W. & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14, 560–589.

    Article  Google Scholar 

  • Tong, F. H., Marlin, S. G., & Frost, B. J. (1995). Visual-motor integration and spatial representation in a visual virtual environment. Investigative Ophthalmology and Visual Science, 36, 1679.

    Google Scholar 

  • Vishton, P. M. & Cutting, J. (1995). Wayfinding, displacements, and mental maps: Velocity fields are not typically used to determine one’s aimpoint. Journal of Experimental Psychology: Human Perception and Performance, 21(5), 978–995.

    Article  Google Scholar 

  • Wagner, M. (1985). The metric of visual space. Perception & Psychophysics, 38, 483–495.

    Google Scholar 

  • Wickens, C. D. & Baker, P. (1995). Cognitive issues in virtual reality. In W. Barfield & T. Furness (Eds.), Virtual reality (pp. 515–541). New York: Oxford University Press.

    Google Scholar 

  • Williams, H. P., Hutchinson, S., & Wickens, C. D. (1996). A comparison of methods for promoting geographic knowledge in simulated aircraft navigation. Human Factors, 38, 50–64.

    Article  Google Scholar 

  • Wilson, P.N. & Foreman, N. (1993). Transfer of information from virtual to real space: Implications for people with physical disability. Eurographics Technical Report Series, 93, 21–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wartenberg, F., May, M., Péruch, P. (1998). Spatial orientation in virtual environments: Background considerations and experiments. In: Freksa, C., Habel, C., Wender, K.F. (eds) Spatial Cognition. Lecture Notes in Computer Science(), vol 1404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69342-4_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-69342-4_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64603-7

  • Online ISBN: 978-3-540-69342-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics