Skip to main content

Bipartite Designs

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1412))

Abstract

We investigate the solution set of the following matrix equation: A T B = J +diag(d), where A and B are n × n {0, 1} matrices, J is the matrix with all entries equal one and d is a full support vector. We prove that in some special cases (such as: both A d −1 and B d −1 have full supports, where d −1 = (d −11 , ..., d −1n )T; both A and B have constant column sums; d −1 · 1 ≠ −1, and A has constant row sum etc.) these solutions have strong structural properties. We show how the results relate to design theory, and then apply the results to derive sharper characterizations of (α,ω)-graphs. We also deduce consequences for “minimal” polyhedra with {0, 1} vertices having non-{0, 1} constraints, and “minimal” polyhedra with {0, 1} constraints having non-{0, 1} vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. S. Bose. A note on Fisher’s inequality for balanced incomplete block design. Ann. Math. Stat., 20:619–620, 1949.

    Article  MATH  Google Scholar 

  2. N. G. de Bruijn and P. Erdős. On a combinatorial problem. Indag. Math., 10:421–423, 1948.

    Google Scholar 

  3. V. Chvátal, R. L. Graham, A. F. Perold, and S. H. Whitesides. Combinatorial designs related to the strong perfect graph conjecture. Discrete Math., 26:83–92, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. S. Gasparyan. Minimal imperfect graphs: A simple approach. Combinatorica, 16(2):209–212, 1996.

    Article  MathSciNet  Google Scholar 

  5. G. S. Gasparyan and A. Sebő. Matrix equations in polyhedral combinatorics. In preparation.

    Google Scholar 

  6. S. Hougardy and V. Gurvich. Partitionable Graphs. Working paper.

    Google Scholar 

  7. A. Lehman. No the width-length inequality. Math. Programming, 17:403–413, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Lehman. The width-lenght inequality and degenerated projective planes. In W. Cook and P. D. Seymour, editors, Polyhedral Combinatorics, DIMACS, Vol. 1, pages 101–105, 1990.

    Google Scholar 

  9. L. Lovász, A characterization of perfect graphs. J. of Combin. Theory, 13:95–98, 1972.

    Article  MATH  Google Scholar 

  10. M. Padberg. Lehman’s forbidden minor characterization of ideal 0–1 matrices. Discrete Math., 111:409–420, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Padberg. Perfect zero-one matrices. Math. Programming, 6:180–196, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Ryser. An extension of a theorem of de Bruijn and Erdős on combinatorial designs. J. Algebra, 10:246–261, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York, 1986.

    MATH  Google Scholar 

  14. A. Sebő. Characterizing noninteger polyhedra with 0–1 constraints. In R. E. Bixby, E. A. Boyd, and R. Z. Ríos-Mercado, editors, Proceedings of the 6th International IPCO Conference, LNCS, Vol. 1412, pages 36–51. Springer, 1998. This volume.

    Google Scholar 

  15. P. D. Seymour. On Lehman’s width-length characterization. DIMACS, 1:107–117, 1990.

    MathSciNet  Google Scholar 

  16. F. B. Shepherd. Nearly-perfect matrices. Math. Programming, 64:295–323, 1994.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gasparyan, G. (1998). Bipartite Designs. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds) Integer Programming and Combinatorial Optimization. IPCO 1998. Lecture Notes in Computer Science, vol 1412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69346-7_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-69346-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64590-0

  • Online ISBN: 978-3-540-69346-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics