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Abstract. We show that the linear cryptanalytic attack on RC5 that
was published by Kaliski and Yin at Crypto’95 does not work as ex-
pected due to the failure of some hidden assumptions involved. Then
we present new linear attacks on RC5. Our attacks use the same linear
approximation as the one used by Kaliski and Yin. Therefore, the plain-
text requirement of our attack is around 4w?"~2 which is impractically
high for reasonably high values of w and r. These new attacks has also
significances beyond the linear cryptanalysis of RC5 to show how linear
cryptanalysis can carry on when the approximation used has a non-zero
bias for the wrong key values. We also discuss certain issues about linear
cryptanalysis of RC5 that need to be resolved for a better linear attack.

Keywords: Cryptology, cryptanalysis, block ciphers, RC5, linear crypt-
analysis.

1 Introduction

RC5 is a secret key block cipher designed by Rivest [5]. Kaliski and Yin [I]
published a linear cryptanalytic attack on RC5 at Crypto’95, which still remains
as the only general linear attack on RCH that has been published in the open
literature. We are going to refer to this attack as the K-Y Attack. In this paper,
we show that the K-Y Attack does not work as expected due to the failure
of some hidden assumptions involved. Then we present some new attacks. Our
attacks are based on the same linear approximation used in the K-Y Attack, but
they are different from that attack in the way they use the approximation to
recover the secret key.

We first briefly review RC5 and linear cryptanalysis. RC5 has a variable block
size, a variable number of rounds, and a variable length secret key. A particular
RCS5 algorithm is defined by these three parameters and denoted as RC5-w/r/b:
w, the word size in bits (half of a block is called a word); b, the key size in bytes;
r, the number of rounds. For the encryption algorithm, we adopt the notation
used in [I]. The algorithm is as follows:
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Li=Lo+ Sy
R =Ry + 51
fori=2to2r+1do
Li=R; 4
Ri=((Li-1 ®Ri—1) < Ri_1)+5;

In the algorithm, “+” denotes addition modulo 2%, “®” denotes bitwise xor,
“<«” denotes left rotation. The i iteration of the for loop is referred as the
it" half-round. The first half-round refers to the two initial equations. L;_1, Ri_1
denote the left and the right halves of the input and S; denotes the subkey at
the i" half-round. (Lo, Rp) is the plaintext, (Laq11, R2,+1) is the ciphertext.

Linear cryptanalysis is a kind of statistical correlation attack for block ciphers
which was developed by Matsui [4] in 1993. The basic idea of linear cryptanalysis
is to find a linear relation, which is called an approzimation, among the plain-
text, ciphertext and key bits, such that the probability of the approximation is
different from 1/2. But, if wrong values are substituted for the key bits in the ap-
proximation, the approximation will behave randomly (i.e. its probability will be
1/2). The attacker collects plaintext/ciphertext pairs which are encrypted under
the same key. Then he tries all possible combinations for the key bits involved
in the approximation with all the plaintext/ciphertext pairs he has collected.
The correct key bit combination is distinguished by its non-random behavior.
Matsui [3] showed that the success probability of the attack is proportional to
N|p —1/2|? where N is the number of plaintext/ciphertext pairs collected.

Some specific notation used in this paper is as follows. RC5-w/r denotes the
RC5 scheme with w bit words and r rounds where each round key is generated
independently. z[i] denotes the i*" bit of a binary string x, and z[i ... j] denotes
the it through j** bits of 2; n denotes 2r + 1.

The remainder of the paper is organized as follows. In §2 we discuss the
hidden assumptions in the K-Y Attack and explain why they do not hold. In
g3HT7 we present our attacks and discuss their success rates. In §8 we conclude
with some open research problems regarding linear cryptanalysis of RC5 and
discuss briefly the factors that make linear cryptanalysis of RC5 harder than
linear cryptanalysis of DES-like ciphers.

2 Hidden Assumptions in the K-Y Attack

In this section, we briefly discuss the K-Y Attack and show the hidden assump-
tions that cause the attack to fail.

2.1 The Attack

Let T denote S1[0] & S3[0] & - - - & S2,—1[0]. The approximation used in the K-Y
Attack is

Ro[0] & Lo [0] =T (1)
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which is obtained by combining the half-round approximation
R [0] = Ro[0] & 51[0]

and the half-round approximation
R;[0] = L;—1[0] & S;[0]

for i = 3,5,...,2r — 1. The probability of this approximation, which we denote
by p, is % + Qw%

The K-Y Attack was different from all the previously published linear crypt-
analytic attacks in the way that it was composed of multiple steps where each
step aimed to recover one bit of the round key. The outline of the attack algo-
rithm is as follows:

Step 1: Guess S,[0] by using the data with L,, mod w = 1.
Step 2: Guess T by using the data with L, mod w = 0.
Step 3: Fori=1,...,w—1, guess S,[i] by using the data with L,, mod w = i.

The point that is important for us in this algorithm is that, at each step,
L, mod w is fized to a certain value.

2.2 Hidden Assumptions

We implemented this attack on RC5-16/2 with 2|p—1/2|~2 plaintext/ciphertext
pairs for each different value of L, mod w (i.e. w x 2|p — 1/2|~2 texts in total).
The success rate we observed for recovering S,, was around 11-15% as opposed
to the 95-99% that was expected by Kaliski and Yin. Even more surprisingly,
the success rate did not improve as we increased the amount of data used. These
results led us to the following observations.

Let AH;, for i = 3,5,...,2r — 1, denote the event that the i*" half-round ap-
proximation R;[0] = L;_1[0] & S;[0] holds. The probability of the approximation
P(AH;) can be calculated as

P(AHZ) = P(AHl | Ri—l mod w = 0) . P(Ri_l mod w = 0)
+ P(AH; | R;—1 mod w # 0) - P(R;—1 mod w # 0).

P(AH; | R;—1 mod w = 0) is always equal to 1. P(R;_; mod w = 0) is equal to
1/w and P(AH;| R;—1 mod w # 0) is equal to 1/2, hence P(AH;) is equal to
1/2+41/2w, given that the input (or the output) of the it" half-round is uniformly
random.

An important point in the K-Y Attack is that at each step the value of
L, mod w is fized to a certain value and it is implicitly assumed that the prob-
ability of Approximation () does not depend on L, mod w. This assumption is
based on two other assumptions:

1. The probability P(R;_1 mod w = 0) does not depend on L,, mod w;
2. The probability P(AH; | R;—; mod w # 0) does not depend on L, mod w.

We will refer to these two assumptions as Assumption 1 and Assumption 2,
respectively.
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2.3 On Assumption 1

We observe that the probability of a zero rotation in the n — 2"? half-round, i.e.
P(R,,—3 mod w = 0), depends on L,, mod w, hence Assumption 1 does not hold:

Rn73 = Ln72
= ((Rn—l - Sn—l) > Rn—Q) ¥ Rn—2
= ((Ln - Sn—l) > Rn—Q) 2] Rn—2-

Therefore, when L, — S,,_1 is fixed, the distribution of R,,_3 is not uniform.
Hence, the probability P(R,,_3 mod w = 0), and therefore the probability of
Approximation (), is not independent of L,, mod w.

As an example, let § denote the difference L,, — S,_1 mod w and p’ denote
R, —3 mod w. The probability P(p’ =0]6 = 0) for w = 16 is 1.56/w as opposed
to the expected probability 1/w.

2.4 On Assumption 2

We also observe that Assumption 2, just like Assumption 1, does not hold for
the n — 2"? half-round; i.e. P(AH,,_o|p’ # 0) is not independent of L,, mod w:
First, we observe that the half-round approximation

Ry —2[0] = Ly —3[0] & Sp—2[0] (2)
can be expressed in terms of only R, _2, S,_2, and p’. The approximation is

R, _2[0] = L,,—5[0] & S,,—2[0]
= (Rn—Q - Sn—Q)[p/] S Rn—3[0] @ Sn—2[0]
= (Ryu—2 — Sn_2)[p'] ® p'[0] ® Sp_2[0].

Second, we know from Section 23] that p’ (i.e. R,_3 mod w) is equal to
(((Lyp, — Sp—1) > Ry, —2) ® Ry,—2) mod w. Therefore, we observe that conditions
on L, — S,_1 and p’ together give information about R,,_s mod w.

These two observations imply that when L,, — S,,_1 and S,,_o are fixed, the
condition p’ # 0 gives information about Approximation (2)) and possibly causes
the probability P(AH,,_5|p’ # 0) to be different from 1/2. For example, for
w =16, L, — Sp—1 =1, S;,—2 = 0, the probability P(AH,,_5 | p’ # 0) is equal to
0.494 as opposed to 0.5.

At this point we should remark that the probability of the approximation
does not depend on the top w — lgw bits of S,,_5. This fact is because p’ and
L, — S,_1 give information about only the last lgw bits of R,_o; therefore
(Rp—2 — Sn—2)[p'] has a uniform distribution when p’ > lg w, regardless of .S, _5.

2.5 Overall Impact of the Assumptions

In every step of the attack the difference L, — S,,_1 is fixed. When L,, — S,,_1 is
fixed, R, _3 and R,,_s have a non-uniform distribution. This fact has two effects
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on the probability of the n — 2"¢ half-round approximation: First, the proba-
bility P(R,—3 mod w = 0) may be different from 1/w. Second, the probability
P(AH,_2| R,,—3 mod w # 0) may be different from 1/2.

Table[d in Appendix[A]lists the bias of Approximation () for different values
of L,—S,_1 mod w and S,,_2 mod w for w = 16. What is particularly important
in Table @] regarding the attack of Kaliski and Yin is the negative entries which
correspond to the case p < 1/2. Success of Steps 2 and 3 of the attack depends on
the assumption that p > 1/2 for every single value of L,, mod w. If the (i, ;)"
entry of Table [ is negative, then for S,_» mod w = j the attack fails with
very high probability at the step where L, — S, _1 mod w is fixed to ¢ and the
failure probability goes to one as the amount of data used goes to infinity. With
respect to the numbers in Table H] we calculated that the average success rate
of the attack for recovering the last round key S, in RC5-16/2 goes to 9.375%
as the amount of data goes to infinity. We also calculated the success rate with
2|p — 1/2|72 texts as 13.9%. These results matched our experimental results in
Section very well.

3 New Attacks

We developed a number of new linear cryptanalytic attacks on RC5. They all
use Approximation ([J), but they are different from the attack of Kaliski and Yin
in the way they use the approximation to recover the round key S,,. Our attacks
are similar to “Algorithm 2” of Matsui [3] which is sometimes referred as the
1R-method. We unroll the last round and substitute the actual value of L,,_1][0]
in Approximation (), which is (R,, — Sy,)[p] © L+ [0], where p denotes L,, mod w
(i.e. the rotation amount in the last half-round). So, the approximation becomes

Ro[0] @ (Ry — Sn)[p] @ Ln[0] = T. (3)

An important difference of our attacks from the 1R-method of Matsui is that,
when we substitute a wrong value s for S, in Approximation (J), the bias of
the approximation is not zero. Moreover, the bias can be expressed in terms of
8, Sy, p and the probability of the approximation, as will be shown in Section [}

Our attacks can be classified into two types: In the first one, we fix p (i.e.
L, mod w) to a certain value at each step and we aim to recover one key bit
at a time. We will refer to the attacks of this type as the 1-bit attacks. In the
second type of attack, we aim to recover a group of consecutive key bits at the
same time. We will refer to the attacks of this type as the multi-bit attacks. We
will describe the attacks in more detail in Sections [ and [

An important issue regarding the experimental comparison of the attacks
presented in the following sections is that they are all run on relatively small
versions of RC5 such as 7 = 2, 4. The reason for this choice of small parameters is
just to make the experiments computationally feasible. Our attack techniques all
use the same approximation (i.e. Approximation (@), and they differ only in the
way they use this approximation to recover the secret key. Therefore, increasing
the number of rounds does not have much effect on the relative performance of
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Fig.1. The variable s denotes the possible key values that can be tried for
Sp[0...p]. ns denotes the number of different values of R,[0...p] such that
(R, — 3)[p] = (R, — Sn)[p). S/, is the key that differs from S,, only at the p'"
bit.

these attack techniques and the experiments with relatively small values of r
give a general comparison of the attacks.

4 Bias for a Wrong Key

As mentioned in Section Bl something special with Approximation (3]) is that,
when a wrong key value s is substituted for S,,, the bias of the approximation is
not zero. An important observation to understand the behavior of the approxi-
mation is the following. When s is substituted for S,, in Approximation (3)), the
result is the same as the result for S, if and only if (R, — s)[p] is the same as
(Ry, — Sn)[p]. These two bits agree when one of the following two conditions is
satisfied:

Let Sy denote min{S,[0...p — 1],s[0...p — 1]} and similarly, let Sp,qz
denote max{S,[0...p—1],s[0...p—1]}:

1. s[p] = Snlp], and R,[0...p — 1] < Spin or Ry[0...p — 1] > Shas-
2. s[p] # Snlp] and Spin < Ru[0...p — 1] < Shiag-

Let ns denote the number of different values of R,[0... p] such that we have
(R, — 3)[p] = (R, — Sy)|[p]- Figure[ illustrates the value of ny for 0 < s < 2°F1,
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More specifically, n, is 27+ for the correct key S,; it decreases by two as s gets
further from S, in either direction; and it is zero at S}, which denotes the key
that differs from S,, only at the p** bit.

Assuming that the probability that the approximation holds and the prob-
ability that the result of the approximation is the same for both s and S, are
independent (where both probabilities are taken over the plaintext), we obtain a
similar figure for the bias of the approximation with s substituted for S,,. Figure
shows the expected bias of Approximation ([B) for different values of s. Let
N denote the number of plaintext/ciphertext pairs satisfying L,, mod w = p for
some fixed p. Let Uy denote the number of those texts such that the left side
of Approximation (@) is 1 when we substitute s for S, and let B denote the
bias Us — N/2. Figure Bl illustrates the expected bias E[B;] for 0 < s < 2°F1
assuming E[Bg, | > 0.

The significance of Figure[2is that it shows what the expected bias of Approx-
imation (@) will be when L,, mod w is fixed and a wrong value s is substituted
for the round key S,,. This behavior of the bias has a crucial role in the attacks
we develop in this paper, especially in the 1-bit attacks (see Section [Hl).

E[ BS] A

N(p-1/2)

s" s
S 2p+l

—N(p-1/2)

Fig. 2. Expected bias for different values of s for L, mod w = p. S/ is the
key that differs from the correct key S, only at the p — 15 bit. p denotes the
probability of the approximation given L,, mod w = p.
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5 1-Bit Attacks

In this section we discuss the attacks that recover the round key .S, in a bitwise
fashion (i.e. recovering one bit at a time). The aim of these attacks is to recover
the key bit S,[p — 1] by using the data with L, mod w = p and given that the
key bits S,[0...p — 2] are already recovered. The idea of attacking the p — 15t
bit instead of the p!* one is inspired by the fact that p may be either less or
greater than 1/2 depending on the value of p, S,—1 and S,_2 (see Appendix
[A]). Moreover, S!,, the number that differs from S,, only at the p!* bit, has the
exact inverse bias of the correct key Sy, (i.e. Bs; = —Bg, ) over the data with
L,, mod w = p (Figure [2). Therefore, we cannot distinguish between S,, and S,
by using the data with L,, mod w = p since we do not know if p > 1/2 or not;
and we cannot know if Sy, [p] is 0 or 1. But this is not the case for S,[p —1]. S/,
the number that differs from S,, only at the p — 15¢ bit, has a zero expected bias
over the data with L, mod w = p regardless of p (Figure ). Therefore, we can
distinguish between S,, and S!/, and hence find out S,[p — 1] by using the data
with L, mod w = p, even if p < 1/2.

All of our 1-bit attacks are based on a generic attack algorithm. Assume
we have recovered the key bits S,[0...p — 2] and let so and s; denote the two
candidates 0]S,[0...p — 2] and 1|S,[0...p — 2] respectively, where || denotes
string concatenation. As,, for ¢ = 0,1, is a statistical variable which is supposed
to be large for the correct key and small for a wrong key. The generic attack
algorithm is as follows:

Generic 1-Bit Attack
Step 1: Compute A, for i =0, 1.
Step 2: If A,, > A, guess S,[p — 1] = 0; otherwise guess S,[p — 1] = 1.

Our 1-bit attacks are defined by their definition of the variable A,. Let S,
denote the set of points in the 2°~2 neighborhood of s;; i.e. the set defined by
Ss, = {s:|s—s;| <2°72}:

Attack 1: A, = |Bs,
Attack 2: A, = |Zs€83i B |.
Attack 3: A, = Zse&i | Bs|.
Attack 4: A;, = maxses, {|Bs|}

Intuitively, Attack 1 simply compares the bias of sy and s;. The other three
attacks on the other hand, also use the biases of the points in the 2°~2 neighbor-
hood of sy and s1 (the choice of 2°~2 is because s + 2°~2 is the mid-point of s
and s1). As will be discussed shortly, our experiments have shown that Attack
1 has the best success rate among the four.

We calculate the success rate of Attack 1 as

S |42V N|p—1/2]| | 1 1
/ / e*y2/2dy—e*w2/2dx, (4)
oo J—|et2VNip—1/2| | V2T V2r
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and the success rate of Attack 2 as

0o rle+1.83VNIp—1/2[| 4 2
[

— /2y, (5)
le+1.83vNlp—1/2| | V2T

1
Vo
It is not straightforward to obtain a closed-form theoretical result for the suc-
cess rate of Attacks 3 and 4. Therefore, we compared the attacks experimentally
on RC5-16/2 on a sample of 10,000 different cases and for different values of p.
The experimental results indicated that Attack 1 is the best among the four. For
Attacks 1 and 2, the experimental results matched the theoretical results given

in (@) and () very well.

5.1 A Generalization

Attacks 1 and 2 are special cases of a more general attack, which we call Attack
G:

Let Ss, 4 denote the d neighborhood of s;; i.e. Ss,.q = {s : |s — si| < d}.
Attack G uses the generic attack algorithm with As, = [>° s (Bs) |. Notice
that this is the same as Attack 1 for d = 0 and the same as Attack 2 for d = 272,

We calculate the success rate of Attack G approximately as

0o plet2(1— 5y )VNIp—1/2] |
/ / 329 —2d4 Le_yQ/QdyLe_Iz/Qd‘r,
—00 J —|z+2(1— 55y )VN|p—1/2] | V2T v2m

which is maximized at d = 0. This result implies that Attack 1 has the highest
success rate among all versions of Attack G.

5.2 An Improvement

A limitation of Attack 1, and also other 1-bit attacks discussed so far, is a zero
bias (i.e. p = 1/2) which occurs for certain values of p, S,_; and S,_o (see
Appendix [A)). In such cases, these attacks are no better than random guessing.
One way to overcome this problem is to use the data with L,, mod w > p as well
as those with L,, mod w = p to recover S,[p — 1].

We present such a modification of Attack 1, which we call Attack 1'. It uses
the data with L,, mod w = p+1 as well as the data with L,, mod w = p to guess
Snlp —1]:

As in Attack 1, let sg and s; denote the two candidates 0||Sp[0...p — 2]
and 1||S,[0...p— 2] respectively, and similarly let s; denote ||S,[0...p— 2] for
1 = 00,01,10,11. The idea of Attack 1’ is to compare the bias for four possible
key candidates sgg, So1, S10, S11- If the bias is maximized for sgg or sig, we
guess S, [p — 1] as 0, otherwise we guess it as 1. The calculation of the bias for
these four points is as follows. As in Attack 1, B,, and B, denote the bias
for sp and s; taken over the data with L, mod w = p. Similarly, B,, denotes
the bias for s; for ¢ = 00,01, 10,11, but taken over the data with L, mod w =
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p+ 1. We guess S,[p — 1] = 0 if |Bgy| + max{|Bsy,|, |Bsi,|} is greater than
| Bs, | +max{|Bs,, |, | Bs,, |} Otherwise, we guess Sy, [p—1] = 1. (This is the generic
1-bit attack algorithm where A, is defined as | By, | + max{|Bs,y,|, | Bs,;|}-)

We experimentally compared Attack 1 and Attack 1’ on RC5-16/2. The ex-
perimental success rates are given in Table [l N denotes the available number
of texts for each particular value of L, mod w. The results show that Attack 1’
is significantly better than Attack 1.

[N [[1,000]4,000]10,000]40,000[100,000]
Attack 1[[79.8%]91.9%] 96.2% 98.4%| 99.1%
Attack 1786.8%]96.4%] 98.0%] 99.5%| 99.9%

Table 1. Success rate of Attack 1 and 1’ on RC5-16/2 for recovering one
bit of the last round key S,. The experimental results show that Attack 1’ is
significantly better than Attack 1.

6 Multi-bit Attack

The idea of the multi-bit attack is quite straightforward: Instead of fixing L,, mod
w at each step, calculate the bias over the data with many different values of
L,, mod w. We know that when L,, mod w is fixed, the behavior of the bias of a
wrong key is not random (see Section[d)). By taking the bias over many different
values of L, mod w, we hope that the bias will behave more “normally” ( i.e.
zero expected bias for a wrong key, positive expected bias for the correct key).

6.1 The Attack

Although the formal description of the multi-bit attack may appear complicated.
In fact, it is really intuitive. Suppose we have already recovered the key bits
Sp[0...k] and we are going to recover the next ¢ bits S, [k + 1...k + ¢]. The
bias for each key candidate is computed over the data with k+1 < L,, mod w <
k + £. The one with the highest bias is accepted. The formal description of the
algorithm is as follows:

U, denotes the number of the texts such that the left side of Approximation
B) is 1 when we substitute s for S,,. The expression S,,[0. .. k] denotes the part
of the round key that has been recovered so far. £ denotes the number of the
key bits that is attacked at one iteration of the algorithm. Once these ¢ bits are
recovered, the algorithm is repeated for the next ¢ bits of .S,.

Attack M (k,£)
Step 1: For 0 < i < 2¢, compute Ui|s,.10...k) over the data with k+1 < L,, mod
w<k+¥£.
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Step 2: Accept i that maximizes the bias |Ujs,[0..x) — N/2|, where N is the
number of data with £k + 1 < L,, mod w < k + £.

The choice of the parameter ¢ is a matter of trade-off. The computational
complexity of the attack increases as ¢ gets larger. More specifically, the number
of active text bits at an iteration of Attack M is k + 1 + £, and the number
of active key bits is £. Hence, the computational complexity of an iteration of
Attack M is 22T*+1 (see Matsui [3]). Therefore, the computational complexity
of recovering a round key of w bits is 22¢ - 22,5:11, for ¢ dividing w. On the other
hand, the reliability of the guesses also increases as ¢ gets larger, especially those
of the low order bits, as will be shown in Section Therefore, the value of ¢
should be decided with respect to the constraints of the available computational
power, time and the desired success rate.

But Attack M has some limitations. For example, suppose we are trying to
recover the key bits Sp[k + 1...&k + ¢], and let S], denote the key that is the
same as S, in every bit except for the k + ¢** one. The bias for S,, and S’
taken over the data with £k + 1 < L,, mod w < k + £ will be exactly the same,
since they are exactly the same at bits 0,1,...,k + £ — 1. Taken over the data
with L, mod w = k + £, the bias for S], will be the inverse of the bias for S,
(see Section [)). Therefore, when the bias for L, mod w = k + £ is negative
(i.e. p < 1/2), we incorrectly deduce that S/, is the correct key with very high
probability! Similar arguments apply to the lower order bits as well, but their
effect is less significant. This fact implies that the guesses for the higher order
bits will not be very reliable, as illustrated by the experimental results in Section

B2

6.2 Experimental Results

We tested Attack M on RC5-16/2 for ¢ = 6,8,10 on a sample of 10,000 differ-
ent cases. Our results are given in Table 2l The entries in the tables are given
as a percentage of the 10,000 trials. The i** column of the tables denotes the
percentage of guesses that are correct at the bits lower than i, but wrong at the
it" bit. Another important point about the tables is that, the data amount N
denotes the available number of texts for each different value of L,, mod w (e.g.
for ¢ = 10, the total number of texts used is 10 x N). We chose this way of
presentation to make the comparison between the tables easier.

The experimental results show that the success rate for the lower order bits
improves as £ increases. But this improvement becomes less significant for higher
data amounts. Another important point is that increasing the data amount does
not help beyond a certain point and the failure rates at the low order bits are
almost stabilized around 0.8-0.9%.

The high failure rates at higher order bits are due to the effect discussed at the
end of Section [6.]], and the success rate for these bits cannot be improved beyond
a certain point, even with unlimited amount of data. Therefore, we suggest
discarding the top two bits guessed, and starting the next iteration of the attack
to include these bits as well. The size of the discarded part may be different for
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L=6 failure at bit

[N 01 [2]3[]47]5
1,00018.4%(5.5%|5.0%|4.4%|5.4%8.1%
10,000(|1.6%|1.9%12.4%|1.9%|4.1%|7.1%
100,000([1.2%|1.4%|1.6%|1.5%|3.4%|7.2%

1,000,0001[0.9%(1.5%|1.7%|1.6%|3.6%|7.2%

L=8 failure at bit

T~ [o0]1[2[3 4[5 67
1,000|(7.1%|4.7%|3.9%|3.7%|3.8%4.9%6.0%|7.7%
10,0001[1.4%11.3%11.4%|1.4%|1.9%|2.2%|4.1%6.8%
100,000([0.9%0.9%0.8%]1.3%]1.5%1.5%|3.4%|7.5%

1,000,000((0.9%0.9%10.9%]|1.2%(1.1%(1.3%|3.4%|7.3%

£ =10 failure at bit

|N 0[1[2[3[4[5[6[7[8[9
1,000((5.6%(4.7%|4.3%|3.6%|3.8%(4.0%3.8%|4.8%(5.6%|7.6%
10,000({1.1%1.2%1.3%|1.2%|1.4%|1.4%|1.6%|2.1%|3.7%|7.2%
100,0001/0.9%]0.9%]1.0%(0.9%10.9%1.1%|1.4%|1.3%|3.6%6.9%

1,000,000([0.8%]0.7%0.9%0.9%0.9%|1.2%|1.1%1.4%|3.2%|7.2%

Table 2. Failure rates of Attack M on RC5-16/2 for £ = 6,8, 10. The i*" column
represents the percentage of guesses that are correct at the bits lower than i, but
wrong at the i*" bit. The results show that the attack gets better as ¢ increases;
but this improvement is less significant when the amount of data used is higher.

different word sizes, and should be determined experimentally (or theoretically
if possible). We denote the size of the discarded part by j and add the following
step to the algorithm Attack M:

Step 3: Discard the top j bits of the key estimated.

7 Comparison of 1-Bit and Multi-Bit Attacks

We compared the two attack strategies experimentally on RC5-16/r for r = 2,4.
Table Bllists the success rates of Attack 1’ and Attack M for guessing the first
eight bits of S,,. Attack 1’ represents the most successful 1-bit attack. N denotes
the number of plaintexts available for each different value of L, mod w. As
discussed in Section[3], even though the experiments are run for relatively small
values of r, they give a general comparison of the attacks, mainly because the
relative performance of the attacks will not be affected much by an increase in
r since they all use the same approximation.

The results suggest that Attack M has a better success rate for smaller
amounts of data but Attack 1’ becomes better as the amount of available data
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[r] NJ[Attack 1'[Attack M]

1,000 32.1% 65.5%
2| 10,000 88.2% 88.7%

100,000 98.3% 91.7%
1,000,000 99.5% 92.1%

1,000 0.6% 0.7%
4] 10,000 0.5% 0.8%

100,000 2.3% 6.5%
1,000,000  20.3%| 22.0%

Table 3. Success rates of Attack 1’ and Attack M on RC5-16/r for recovering
the first eight bits of S,,. The results show that Attack M is better for smaller
amounts of available data. The success rates fall sharply as r increases.

increases. An advantage of Attack 1’ over Attack M is that the success rate
of Attack M does not improve much beyond 92% regardless of the increase in
the data amount. But there is no such limit on the success rate of Attack 1’.
Besides, the 1-bit attacks have two other advantages over the multi-bit attacks.
First, they are computationally less expensive. Second, a wrong guess in a 1-bit
attack can be detected earlier and can be corrected more easily since the biases
after a wrong bit guess will be significantly smaller than what is expected.

The dramatic decrease in the success rates as the number of rounds r increases
suggests that our attacks are not practical enough to break RC5 for larger values
of r and w. This thought is also supported by the fact that all of our attacks
are based on Approximation () which has a quite low bias for larger values of
r and w. At this point, it is not possible to calculate the exact success rates
for a given amount of data. This fact is due to the lack of a concrete formula
for the relation between the probability of Approximation (@) and L, mod w.
However, we conjecture that the data requirement for a significant success rate
will be comparable to |p —1/2|72, that is 4w?"~2 which is impractically high for
reasonably high values of w and r (i.e. w > 32, r > 6).

8 Conclusions

We presented some new results about linear cryptanalysis of RC5. First, we
showed that the attack of Kaliski and Yin [I] does not work as expected due
to some unexpected consequences of fixing L,, mod w. We studied the statistical
behavior of Approximation (II). Then, we presented some new techniques of using
this approximation to recover the last round key S,.

Our results on the attack of Kaliski and Yin has significances beyond the
linear cryptanalysis of RC5: It is significant to emphasize that hidden assump-
tions may have extremely serious consequences. It is also significant to show that
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extreme care has to be taken when applying a method developed for a specific
cipher to a cipher of different type.

The attacks we presented in this paper are examples of how linear cryptanal-
ysis can carry on when the bias is different from zero for a wrong key substituted
in the approximation. At this point, it is not possible to calculate the exact suc-
cess rate of our attacks due to the lack of a concrete formula for the relation
between the probability of Approximation () and L,, mod w. However, we con-
jecture that the data requirement for a significant success rate will be comparable
to |[p —1/2|72, which is impractically high for our approximation. Therefore, we
believe that RC5 still remains secure against linear cryptanalysis.

There are many open research problems that are to be solved about the linear
cryptanalysis of RC5. An important one is to obtain a theoretical result for the
relation between the probability of Approximation (), and L, —S,_1 and S,,_2.
In this way, it will be possible to obtain theoretical results for the success rate of
the attacks that are based on Approximation ()), including the ones presented
in this paper. Moreover, it should be possible to use such a relation in an attack
which obtains further information about the round keys S,,_; and S, _».

Another significant improvement will be to develop better linear cryptana-
lytic attacks than the ones presented here. However, any attack based on Ap-
proximation ([I]) will be limited by the low bias of that approximation. Therefore,
finding a better approximation is essential to improving the linear cryptanalysis
of RC5 significantly. But any researcher trying to find a better linear approx-
imation should be aware of a proposition of Kaliski and Yin [1] that states a
limitation of linear approximations of RC5.

A way to circumvent this limitation may be to use non-linear Approximations
[2]; not just at the end rounds, but at the intermediate rounds as well. The main
reason for using linear approximations in DES-like ciphers is that it is easy to
find approximations of S-boxes since they are relatively small. Moreover, if an
approximation of an S-box is linear it can be distributed to and stated in terms
of the input, output and key bits of that round. But this argument is not true
for RC5 since it does not have small sub-blocks like S-boxes. Moreover, using
linear approximations does not have the advantage of being easily distributed
to input, output and key bits as it is in DES. Therefore we believe that, at least
theoretically, finding a non-linear approximation of RC5 is not substantially more
difficult than finding a linear approximation. But it should be noted that finding
an approximation for RC5 is not an easy task in general since there are no small
sub-blocks like S-boxes.

As a last minute note, we have recently found out that the probability p of
Approximation () is not equal to %—&— 21“% which was calculated by Kaliski and
Yin. The reason of this unexpected result is that the two consecutive half-round
approximations R;[0] = L;—1[0] @ S;[0] and R;42[0] = L;+1[0] & S;12[0] are not
independent, and therefore, the piling-up lemma cannot be used to calculate
the probability of Approximation (). We experimentally found out that the
probability p is extremely key dependent and it can be a lot different from % +
s—— depending on the key. Even when averaged over the keys, the probability

Qwr—1
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of Approximation () is a lot different from % + 211}% Now, this new finding
leaves the whole issue of linear cryptanalysis of RC5 as an open question.
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w

A Bias of the Approximation

The probability of the half-round approximation
Ry —2[0] = Ln—3[0] & Sn—2[0] (6)

depends on the value of (L, — S,—1) mod w and S,,_2 mod w. This fact implies
that when L,,, S,—1 and S,,_5 are fixed, the bias of the approximation may be
different from its average bias 1/2w. Table [ lists the bias of Approximation
(®) for different values of (L, — S,—1) mod w and S, _2 mod w for w = 16.
These values are computed by exhaustively going through all possible values
of (Ly, Ry). The parameter ¢ denotes the difference (L,, — S,_1) mod w. The
entries of the tables are the actual biases as a proportion of the average bias

1/2w (ie. (p— 1/2)/(1/2w)).
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Sn_2 mod w
01 [2]3[4]5]6]7
2.25] 0.75[1.75] 2.13] 1.63] 1.50[ 0.75[ 1.88
0.50-1.25[1.50] 2.63[-0.38]-0.25] 1.00] 1.88
2.25| 1.75/0.75] 2.13]-0.38] 0.50[ 1.75[-0.13
1.00] 0.25[2.50[ 0.13[ 2.63[ 0.75] 2.50| 0.38
0.75] 0.25/0.25| 0.63[ 0.13] 1.00[ 0.25] 0.88
1.00] 0.25[0.00[ 1.13[ 0.13[ 1.25] 0.50] 0.88
-0.25] 1.25[1.25|-0.38] 0.13] 1.00[-0.75[ 1.88
0.50] 2.75[2.00]-0.38] 2.13] 1.25[ 2.00[ 1.38
0.75] 1.00[1.00] 1.13] 1.13] 0.75[ 1.00[ 0.88
1.00[ 1.00[0.75] 1.63[ 1.13[ 1.00] 1.25] 0.88
0.75] 1.00]1.00] 1.13] 1.13] 0.75] 1.00[ 0.88
1.50] 1.50[0.75] 1.13[ 2.13[ 1.00] 1.75| 1.38
0.75] 1.00]0.50] 0.63] 1.13] 0.75] 0.50[ 0.38
1.00[ 1.00[0.25[ 1.13[ 1.13[ 1.00] 0.75] 0.38
0.75] 1.00]0.50] 0.63] 0.13] 1.75[-0.50[ 1.38
1.50] 2.50[1.25] 0.63[ 2.13[ 2.00] 2.25| 0.88
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Srn—_2 mod w

8911 [12]13]14[15
1.88[ 0.88] 1.38[ 2.25] 1.75] 1.38[1.13] 1.75
0.38]-1.38] 1.38] 2.50] 0.00[-0.63[1.13] 2.00
1.88] 1.88[ 0.38] 2.25[-0.25] 0.38]2.13[-0.25
2.38[ 2.63]-0.13[ 2.50| 0.50] 2.88]0.13] 2.00
-0.13] 0.88] 1.38] 0.25] 0.75] 0.38[1.13] 0.25
0.38] 0.63[ 1.38] 0.50[ 1.00] 0.38[1.13[ 0.50
0.88-0.13[ 2.38-0.75[ 0.75] 0.38[0.13[ 1.25
0.38] 2.63] 1.88] 0.50] 1.50] 1.88[1.13] 1.50
0.63] 0.88] 0.88] 1.00] 1.00] 0.88[1.13] 1.00
1.13[ 0.63] 0.88[ 1.25[ 1.25[ 0.88[1.13[ 1.25
0.63] 0.88] 0.88] 1.00] 1.00[ 0.88[1.13] 1.00
1.13[ 1.63[ 0.38] 1.25[ 1.75] 1.38[1.13[ 1.25
0.63] 0.88[ 0.38] 0.50[ 1.00] 0.88[0.63] 0.50
1.13] 0.63] 0.38] 0.75] 1.25] 0.88]0.63[ 0.75
1.63[-0.13] 1.38]-0.50] 1.00[ 0.88]0.63] 0.50
1.13[ 2.63[ 0.88[ 0.75] 1.75] 2.38[1.63[ 0.75
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Table 4. Bias of the n — 2"¢ half-round approximation as a proportion of the
expected bias 1/2w when L,, mod w is fixed, for w = 16. The variable § denotes
the difference (L,, — S,—1) mod w. The numbers in the table show that how big
an impact the hidden assumptions had on the bias of the n — 2"¢ half-round
approximation.
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