New Constructions for Secure Hash Functions
(Extended Abstract)

William Aiello!, Stuart Haber?, and Ramarathnam Venkatesan®*

! BellCore (aiello@bellcore.com)
2 Surety (stuart@surety.com)
3 Microsoft Research (venkie@microsoft.com)

Abstract. We present new, efficient and practical schemes for construc-
tion of collision-resistant hash functions, and analyze some simple meth-
ods for combining existing hash-function designs so as to enhance their
security.

In our new constructions, we first map the input to a slightly longer
string using a primitive we introduce called secure stretch functions.
These are length-increasing almost surely injective one-way functions
that sufficiently randomize their inputs so that it is hard for an ad-
versary to force the outputs to fall into a target set. Then we apply a
compression function to the output of the stretch function. We analyze
the security of these constructions under different types of assumptions
on both stretch and compression functions. These assumptions combine
random-function models, intractability of certain “biasing” tasks, and
the degeneracy structure of compression functions. The use of stretching
seems to allow reduced requirements on the compression function, and
may be of independent interest.

These constructions allow one to use popular and efficient primitives such
as MD5, SHA-1, and RIPEMD that may exhibit weaknesses as collision-
resistant functions. But no attacks are currently known on their one-way
and randomizing properties, when they are used as stretch functions as
in our constructions. There are several collision-resistant hash functions
based on DES for which there are no known effective attacks, but which
are too slow for most practical applications. Our use of stretch functions
enable us to base our compression function on DES so that the resulting
hash function achieves practical speeds: a test implementation runs at
40% of the speed of MD5.

We also suggest some imperfect random-oracle models, showing how to
build better primitives from given imperfect ones. In this vein, we also
analyze how to defend against a collision-finding adversary for a given
primitive by building “independent” primitives.

1 Introduction

In this work we present new and practical constructions for secure hash functions,
and analyze their security. In addition, we present simple methods for combining
existing hash-function designs so as to enhance their security. There is a com-
pelling need for better understanding of the principles of secure hash-function
design.

* Part of this work was done while with Bellcore and Surety.

S. Vaudenay (Ed.): Fast Software Encryption — FSE’98, LNCS 1372, pp. 150-{167] 1998.
© Springer-Verlag Berlin Heidelberg 1998

New Constructions for Secure Hash Functions 151

Many cryptographic procedures that handle very long bit-strings make use
of a hash function. The security of these procedures relies on the collision resis-
tance of the hash function in use, or on the function’s “randomizing” effect. A
hash function f is collision-resistant if it is infeasible to find a pair of distinct
arguments # 2’ such that f(x) = f(').

There are several approaches to the design of such hash functions. While it
is not known whether any current designs achieve the desired properties, they
generally fall into two categories: designs based on an existing block cipher (or
other cryptographic primitive), and custom designs “from scratch.”

Customized hash functions: There have been a number of proposals
for a “practical” secure hash function, one that admits fast software imple-
mentations and for which it is hoped that the cost of computing hash col-
lisions is infeasible in practice [Riv 90lRiv 92INIST 94/BP 95/DBP 96//AB 96].
Several of these are in widespread use. However, the general design princi-
ples for cryptographic hash functions are not well understood. As in the case
of block ciphers, in practice a good hash function is simply one that survives
the current attacks. Recent collision-finding attacks due to Dobbertin, using a
differential approach, have been successful against RIPEMD, MD4, and MD5
[Dob97Dob 96allDob 96b]. More recently, even the one-wayness of MD4 has
been challenged [Pre 97lDobh 98].

One approach would be to try to build on existing primitives. For example,
one can concatenate the outputs of two different hash functions, hoping that the
two functions behave “independently” (see [Pre 93, §2.4.5] and certain commer-
cial designs, e.g. [Sur_95]). But one’s hope is weakened by a cursory look at the
source code for the popular hash functions, and even more so by Dobbertin’s
attacks on MD4-256, which derives two 128-bit values in this manner [Dob 96a].

Current methods to extend or strengthen previous designs include the follow-
ing: increase the number of rounds (as in MD5); add some coding or scrambling
steps (as in SHA-1); increase the buffer size and make the mixing step vary
with the round. All of these are natural attempts to increase the security of a
hash-function design, but an analysis based on a set of plausible heuristic as-
sumptions would better enhance our confidence in the result. An example of
such an assumption is the ideal-cipher model for DES, discussed below.

Hash functions from (ideal) ciphers: Another well studied approach (see
e.g., [IMMOR5BCT 88Merk 89]) bases the design on an existing trusted block
cipher. For security assessments of such schemes see [Merk 84/KP 97[PGV 93al.
(For this and other questions about cryptographic hash functions, [Pre 93] and
MOV 97, chap. 9] are excellent references.) Unfortunately, these designs yield
implementations using DES that are slower than MD5 (for example) almost by
an order of magnitude, making them unacceptable for many applications. The
usual measure of the efficiency of a design based on an n-bit cipher is its rate,
defined as the number of n-bit blocks of data compressed per applications of
the cipher. (Sometimes, as in [Pre 93], “rate” is used to mean the inverse of this
ratio.) One of the suggestions here enables us to increase the rate significantly,
yielding practical designs.

152 William Aiello, Stuart Haber, Ramarathnam Venkatesan

It is common to use idealizations of block ciphers as random permutations or
functions from (n+9)-bits to n-bits in the analysis. In this case one can construct
n-bit valued secure hash functions (see references above). In the case of DEs,
where n = 64, this yields 64-bit hash functions, which are vulnerable to simple
birthday attacks. However, it is non-trivial to construct 2n-bit valued secure hash
functions from families of n-bit valued hash functions. The 2n-bit valued hash
function must behave like a 2n-bit valued random function for up to 2™ queries,
but the n-bit primitives run into birthday collisions around 2"/2 queries, which
potentially could be used in an attack against the design. A solution for this
output-doubling problem was given in [AV_96]. This construction is expensive,
making eight calls to the underlying random function, and hence it is not suitable
for a practical 2n-bit valued compression function.

The analysis of our construction begins by assuming that both of the two
functional components are random functions. This is not for the purpose of prov-
ing the existence of secure hash functions, but rather to examine what security
parameters can be achieved. In addition, it motivates the weaker assumptions
and the analysis that follow.

1.1 New Constructions

The constructions that we propose first stretch the input string mildly, and then
compress the result of this expansion. Here we briefly motivate this approach.

Expansion stage: Our first stage stretches the input mildly. We will use
primitives that have reasonable one-wayness and randomizing behavior, so as to
obtain an almost surely one-to-one stretch function. This trivially avoids colli-
sions in the first stage, and allows us to analyze this stage using distributional
and one-way properties of the primitives we employ. Furthermore, these prop-
erties make it infeasible for the adversary to force its outputs into a set of his
choice—for example, a set of points for which he has computed collisions for the
second stage. We show how to use popular hash functions like MD5 or SHA-1
to do this. We remark that in large randomness tests with MD4 and MD5, it
has been observed that both functions have very good distributional properties,
even when they are iterated [PV_96].

Compression stage: In our second stage we apply a compression function.
This stage could simply use any candidate collision-resistant hash function such
as SHA-1 or RIPEMD-160. In fact, the security of our construction does not re-
quire collision resistance from the compression stage. For example, an adversary
might find collisions for the compression stage. However, the colliding strings
may not be in the range of the stretch function, and even those that are will
be hard to invert. On the other hand, if the adversary begins by finding many
input-output pairs for the stretch function, then a successful attack on the whole
construction must find compression-stage collisions from among this restricted
set of fairly random points.

Constructions using existing primitives
In a practical setting this work suggests ways to use the hash functions that are

New Constructions for Secure Hash Functions 153

currently broken or partially broken in such a way that we can depend on their
one-wayness and randomness or distributional properties, rather than directly
on their collision-security, which may be in doubt or already violated. In fact,
there are many choices for each of the two components of our construction, and
they can be combined independently.

Customized Hash Functions Customized hash functions, for example,
MD5, SHA-1, and RIPEMD-160, can be used in either or both stages of our
construction.

If the hash function has N bits of output, then it can be used in the stretching
stage as follows. If at most N bits are needed for the input to the compression
stage, then simply feed £-bit blocks (¢ < N) of input text to the hash function. If
more than N bits are needed for the input to the compression stage, we propose
the following simple chaining. Use the N bits of output above as the first N bits
of output of the chaining rule. In addition, concatenate these bits to the next ¢
bits of input to the hash function to get another N bits of output, and continue
this chaining rule as needed.

For the compression stage, any of these hash functions can be used directly
on the fixed-length output of the expansion stage.

We remark here that MD4 may also be sufficient for both stages. For example,
as noted above the stretching stage is required to be one-way. Although two
rounds of MD4 have recently been inverted [Dob 98], the inverse found is of
length 512. Note that there are very many inverses (2°127128) for an average
128-bit output. However, MD4 might be used in our stretching stage to expand,
for example, 80-bit inputs to 128-bit outputs. In this case, for an overwhelming
fraction of outputs, an adversary would be required to find the unique inverse. In
addition, with a sufficiently random and one-way stretch function, our analysis
suggests that requirements for the compression function are considerably relaxed.
For example, using a truly random stretch function the compression function
need only have a “fairly uniform” preimage structure.

Subset Sum Constructions based on the subset-sum function may be used
in the stretching stage. The subset-sum function may also be used in the com-
pression stage, because it is known to yield provably secure hash functions on
the assumption that it is infeasible to find almost shortest vectors in lattices
[GGH 96]. However, the best lattice-based attacks are quite powerful, forcing
the lattices (and the cache needed for the implementation) to be relatively large.
We suggest some constructions in the final version of this paper.

DES Any DEs-based hash function, e.g., [MMO 85|BC* 88|Merk 89], may
be used in either stage of our construction in the same way as described above
for customized hash functions. However, since these hash functions consume few
bits of input per DES call (i.e., they have low rate), the resulting hash function
will be unacceptably slow for most practical applications.

In this paper we propose a new DES-based construction for the compression
stage. Because of the properties of the first stage, our construction uses only
two DES calls to obtain a 128-bit output value. The construction is extremely
simple. As in [Merk 89] we will use a modified form of DES called MDES, defined

154 William Aiello, Stuart Haber, Ramarathnam Venkatesan

as follows: MDES(K, z) = DESk(z) @ = (where K is potentially the 16 * 48-bit
expanded key). The output of the stretching stage is split into two pieces, each
of which is used separately as the key to one MDES call. The outputs of the two
calls are simply concatenated.

Assuming that the stretch stage is a truly random function, and that DES has
an almost regular preimage structure (i.e. all points in the range have approx-
imately the same number of key-plaintext pairs mapping into them), we show
that this construction is secure (see §3.3]). This is a significant simplification on
the requirements of the primitives to be used in a compression function. The
same scheme without the randomizing initial stage is insecure; to achieve simi-
lar security would require more rigorously random-function like primitives, and
many more calls to them (e.g. as in [AV 96]).

In many cipher-based constructions, the string to be hashed is used as a
“key” to encrypt some initial or intermediate values of the hash function. The
usual DES key scheduling algorithm stretches the given 56-bit key into 48*16
bits. One way to improve the rate of a DES-based hash function would be to
skip the key-scheduling algorithm and feed 16*48 bits of input text directly as
a key. This idea is swiftly rebuffed: one can use the invertibility of intermediate
rounds of DES and mount a meet-in-the-middle attack, as follows (see [C_85] and
[MH&T] for related attacks). The attacker can pick the text corresponding to
the keys for all but three rounds arbitrarily. He picks the remaining round keys
randomly, and expects a birthday collision between one round in the encrypting
mode and the next level in the decrypting mode.

Our DES-based scheme, perhaps controversial, allows the thoroughly ran-
domized output from the first stage to be used directly, and thus to skip the
key scheduling algorithm. This considerably increases the rate of the resulting
construction.

While this proposal clearly needs study, there is evidence to support the
claim that keying DES in this manner is secure. We point out that this is similar
to scheduling the round keys in DES with independent keys, a method whose
security is closer to exhaustive search for the 56-bit key (rather than the ex-
tended key of length 16*48) in the sense that it takes about 254 steps (including
computational overhead) by current differential attacks, and one may expect
this number to be somewhat smaller for linear attacks. Of course, the key is
considered hidden for the differential attacks against a block cipher. Differential
attacks are far more natural in the context of secure hash functions since the
attacker can compute all the required input-output pairs by himself. In addition,
the attacker could conceivably mount a meet-in-the-middle attack based on the
invertibility of individual rounds of DES, as discussed above; but such attacks
are not applicable to our use of DES, because the adversary has little effective
control over the key bits.

Example parameters are as follows: we can securely stretch a 512-bit string
to a 16*48-bit string and use the latter output as a DES key. Then using the
stretched output as a DES key would effectively allow us to compress 512 bits per
DES call. With well optimized assembly-language implementations, this results in

New Constructions for Secure Hash Functions 155

implementations that are so much faster than standard DES-based constructions
that they can be used in practice. See below for run-times of a preliminary
implementation.

We stress that the second stage is not required to be derived from a cipher,
and hence our first stage is not merely a key scheduling algorithm. Often, as in
the case of DES or Tiger, the key scheduling in a hash-function design is reversible,
but we demand one-way and randomizing properties in our first-stage functional
component. Such reversibility may be more appropriate for ciphers, where the
key is held secret, than it is for hash functions, where the collision adversary can
choose the inputs. Our stretch functions may actually strengthen block-cipher
constructions by helping to avoid weak keys and related-key attacks; we omit
details here to obey space constraints.

However, there are attacks on adaptations of DES that skip the key-scheduler.
Below we point out how the use of stretch functions can avoid these attacks.
Briefly, the attacker must be able to choose some portions of the extended key
during the attack, which is what the randomizing expansion step is designed to
preclude: With overwhelming probability, the attacker’s choice of extended keys
will not be in the range of the first stage, and there is no easy way to take a
small string and extend it to a string lying in the range of the first stage.

We believe our designs are useful in practice, and allow their security to be
analyzed under explicitly stated assumptions on the cryptographic primitives
that we use. Finding the weakest assumptions sufficient for the construction
of collision-resistant hash functions is a fundamental unsolved problem. Our
constructions raise some related issues that may be helpful both for the practical
as well as the theoretical point of view. To summarize, the stretching stage
simplifies the requirements on the compression function, which is arguably the
crux of the task of designing secure functions. This is significant in itself, and
may actually lead to faster constructions upon further research.

Performance

We performed a preliminary implementation to test the speed of one version of
our construction and found it surprisingly fast compared to several other hash
functions. Our test implementation on a 166Mhz Pentium Processor based laptop
computer yielded a version running around 60Mbits/second. Here, as described
above, we used MD5 for the stretch function, mapping 96*6 bits to 128*%6=48*16
bits, and for the compression stage we used the DES-based construction produc-
ing 128-bit hash values.

We compared the speed of our construction both to MD5 and to DES-based
hash functions. We tested with many variants for the DES-based compression
schemes. The speed reported here for these functions is overestimated by as-
suming that they consume close to 56 bits of input per DES call. The speeds of
MD5, our hash construction, and DES-based hashing are in the ratio 1 : 0.43 :
0.032. Our testing did not optimize for platform-dependent parameters such as
cache size. The usually quoted speed ratios between MD5, SHA-1, RIPEMD-
160, DES are 1 : 0.41 : 0.34 : 0.13. These ratios are at best treated as ap-

156 William Aiello, Stuart Haber, Ramarathnam Venkatesan

proximations, since many parameters can cause these ratios to vary among
modern processors. For example, assembly coding can speed up different al-
gorithms at different rates. While our DES code was optimized, our MD5 imple-
mentation was a straightforward one. In the final version, which will be avail-
able from the authors (or at http://research.microsoft.com/crypto and
http://www.surety.com/pub/), we shall present more detailed performance
analysis of more varied schemes.

1.2 Imperfect Random-Function Model Constructions

In 4 below, we suggest some imperfect random-oracle models, and show how
to build better primitives from given imperfect ones. In this vein, we also ana-
lyze how to defend against a collision-finding adversary for a given primitive by
building “independent” primitives.

2 Preliminaries

We will often model functions as random functions. A random function has the
following property. When it is evaluated on an input (assumed to be different
from all other inputs thus evaluated, since there is no need to evaluate the
function more than once on the same input) the output is uniformly distributed
and independent of all output values thus far.

We fix a bounding function B(n) (e.g. 2°-5") and this will correspond to our
notion of an infeasible amount of resources (e.g. run-time or memory). We call
functions (e.g. run-times) lower-bounded by B(n) infeasible and functions that
are smaller than 1/B(n) negligible. We call probabilities of the form 1 —1/B(n)
overwhelming.

A function f mapping n bits to m bits is said to be one-way if f is efficiently
computable (e.g. in polynomial time), and given y = f(x) where z is randomly
chosen, any inverting algorithm I(-) with f(I(y)) = y takes at least time B(n)
with overwhelming probability (over). In addition, if m < n and for any (ad-
versary’s collision-finding) algorithm C, a successful execution C'(n,m) = (x, ')
satisfying f(z) = f(z') takes time at least B(m), then we call this function
collision-resistant. For formal definitions and implementations based on various
assumptions see [Dam _87|Merk 89/BY 90]; in addition, [Pre_93IMOV _97] are ex-
cellent references for this topic. It is not known what is the weakest assumption
under which one can construct collision-resistant hash functions.

Given a fixed-length collision-resistant compression function H mapping L-
bit inputs to N-bit outputs (N < L), one can build a collision-resistant hash
function G defined on arbitrary-length inputs following the construction of Merkle
[Merk 90| and Damgard [Dam 89]. Assign a fixed N-bit “initial-value” string IV,
and given an input = x125 - - - x4 (formatted, with “Merkle-Damgard strength-
ening,” i.e. with appropriate padding to encode the length of the text, as ¢
blocks of length L — N), let the value of G(z) be defined as follows: Gy = IV;
G; = g(Gi—1,x;), 1 < i < t; G(xz) = G¢. Thus, we will concentrate here on
analyzing a fixed-length, collision-resistant compression function H.

New Constructions for Secure Hash Functions 157

3 New Constructions: Definition and Analysis

After describing our new construction (in §3.1)), we proceed to analyze its se-
curity, first by assuming that its components are truly random functions of the
appropriate class (§3.2)), and then by weakening these assumptions (§3.3]). This
analysis treats the properties of our construction of a cryptographic hash func-
tion H with fixed-length inputs.

3.1 Definition

Our constructions first stretch the inputs and apply a compression function next.
We describe the requirements on these functions after presenting some rationale
for stretching.

Secure Stretch Functions We introduce the use of secure stretch func-
tions, which mildly increase the input lengths, for the purposes of constructing
hash functions. A stretch function f maps ¢-bit inputs into 2m bit inputs, where
2m > {. The input strings to f will be denoted by t and the output strings will
be denoted by the pair K, K. Informally, they satisfy:

— One-wayness: given any y = f(x) it is hard to find any 2’ such that f(z) = y.
— Outputs of f behave as if f is locally random (i.e., k-wise independent, for
some k >> 1).

Under the randomizing conditions we pose on f’s outputs, f is an injective
function on an overwhelming fraction of the inputs if 2m — ¢ is large enough.
Our definition of one-wayness is also known as “preimage resistance.”

Compression Functions The outputs of these stretch functions (along
with a 2n-bit IV) are fed into a compression function h from (2m + 2n) bits to
2n bits. We will consider the first 2m bits of input as a key. The remaining 2n
bits of input will be denoted by the pair z, Z and the output by y, y. Our overall
compression function will be denoted by h, which compresses ¢-bit strings to
2n-bit strings. It is defined as follows:

f(t):KaK7 hf(t)(xaf)'

While there are many instantiations for h the one we will concentrate on is
as follows. Let h denote a compression function from m + n bits down to n bits.
The first m bits of input of h will be considered a key. For now, we will define
hyc g (2, 7) = hic(z), hic (7).

In our implementations we use a modified form of DES as our function h(-),
namely hg(x) = MDES(K,z) = DESk(x) @ r(K,x), where (K,) represents
some simple function of K and z. (For example, r(K,x) = x was suggested in
[MMO_85IMerk 89].)

Note that in this case the hash value is 128 bits and to resist the attacks due
to van Oorschot and Wiener [vOW 94] 192-bit hash values may be needed. It is
easy to generalize our result to 192 bits by using three calls to the underlying
cipher. This will be covered in the complete version of the paper.

158 William Aiello, Stuart Haber, Ramarathnam Venkatesan

Butterfly Compression: We define a variation on the compression func-
tion above, the “butterfly compression,” as follows:

bhy z(z,Z) = hx(z) ® r(K,Z),hg(Z) ®r(K,z),

where h and r are appropriately chosen and r(-) is very simple to compute (for
example, r(k,y) = y). This variation appears to increase the complexity of the
attacks using inversion algorithms. In the final version of this paper we present
an analysis of this scheme.

3.2 Analysis Assuming f and h Are Random Functions
We begin our analysis of H by assuming that f and h are random functions.

Lemma 1. When the stretching function f is a random function from £ bits to
2m bits and h is a random function from m++n bits to n bits, an adversary making
a total of q queries to f and h will find a collision with probability ©(q*/2%").

Proof: Any adversary which makes a total of ¢ queries in sum to f and h can
do no better than an adversary which makes g queries to both f and h. We will
thus analyze the latter type of adversary.

Due to the fact that both f and h are random functions, it is easy to show that
the adversary maximizes its chances of finding a collision by using the outputs of
its queries to f as the input to its queries to h. Due to space limitations we omit
this argument here. So, assume the adversary makes g queries to f to produce
{(ki k:i)} as well as {(yi, 9:)}, 1 < < q, where y; = hy, (z) and §; = hy, (2).

We will assume that m > n. Fix a pair of queries, i and j, 1 <14, j < ¢, and
let us calculate the probability that this pair of queries yields a collision, i.e.,
that (yi,9:) = (y;,7;). There are four disjoint cases.

Case 1 : k; = k; and ki = I@-. This event occurs with probability 272m,

Case 2 : k; # kj and y; = y; and k; = k;. This event occurs with probability
at most 2~ (+m)

Case 3 : k; = k; and ki # léj and §; = ¢;. This event also occurs with proba-
bility at most 2~ (m+7n),

Case 4 : k; # kj and k; # k; and (y;,9;) = (y;,9;)- This event occurs with
probability at most 2727,

Since we are assuming that m > n, the probability that there is a collision for
this fixed pair of queries is at most 4/22". Hence, the probability that there is
any collision is 4(f) /22"

This analysis is tight. Clearly, the probability that a collision occurs in ¢
queries is at least §2(q2/2%"). O

3.3 Analysis with Weaker Assumptions

We now assume that one of the two functions behaves like a random function
and ask what conditions must be required of the other function. It turns out
that rather surprisingly weaker conditions suffice.

New Constructions for Secure Hash Functions 159

Assuming f is random and h is almost regular

We now assume f behaves like a random function. Our goal is to show that it is
sufficient to have some assumption on the distribution of the number of inverses
belonging to a point in the range of h. Define S, (y) = {K | hx(z) = y}. Let
sz(y) = |Sz(y)|. For any fixed z, note that 3 s.(y) = 2™, so that the average
value of s, (y) over all the values of y is 2™~ ™. Define p,(y) = s.(y)/2™ " and
observe that > p.(y) = 2".

Definition 2. We say that h is a-regular if for all z, 3, pz(y)? < a2m.

This condition is equivalent to the following: Let y be a random point in the
range, chosen with probability 2=". Then, for a randomly chosen y, E(p,(y)?) <
a.

For a random function, the value of « is a constant with high probability. Note
that requiring a function to be a-regular is a weaker condition than requiring
that each p,(y) be less than or equal to /o (for example, a (1 + o(1))-regular
function might have, say, n values of y with p,(y) = n for some value of x).

Theorem 3. If the function h is a-reqular and f is a random function, then
an adversary making q queries to f will find a collision of H with probability

9(042(12/2271)‘

Proof: Assume the adversary makes g queries. Fix ¢ and j and consider the i-th
and j-th queries. Then,

Prob((yi, 4:) = (y5,9;)]

:ZZProb[yz':yj:y; Yi = 9; =]
= (ZProb[kieSz()i kj € Sa(> (mebk € Sz(9); kj € Sa(y)])

Y

() ()
= (%: pi(y)/22"> (Z P (5 22") < a?/2

where the last inequality follows from the regularity assumption. It follows that
the probability of the adversary finding a collision is at most (g) a? /22, a

So it follows that randomness properties of f are sufficient to weaken the
requirements on h considerably. Also, note that the outputs of f need not be
completely independent, only 4-wise independent.

A word of caution is warranted here. If no one-wayness properties on h are
imposed other than the degeneracy condition, then one must be careful about
the fraction of easy points in the range of f (at which it is easy to invert f) in
concrete implementations of f.

160 William Aiello, Stuart Haber, Ramarathnam Venkatesan

Assuming f is almost injective and h is random

In this section we consider the dual of the previous section: h will be considered
a random function and we will impose some computational assumptions on f.
We will first assume that f has high collision security as defined below. We stress
here that the functions we consider here are not necessarily compressing.

Definition 4 (Collision Security of Hash functions). A family of hash
functions onto n bits has Collision security of s(n) (example s(n) = 2") if any
algorithm running in time T(n) finds a collision pair with probability at most

(T(n)/s(n))?.

Note that a more general version of the definition would allow the 2 to be
replaced by any positive constant.

We stress that when the function is stretching and “randomizing”, a large
collision security is a mild and realistic assumption since the function is likely
to be injective on overwhelming fraction of the range.

The collision security will help us characterize the strength of our scheme.
But we will also need our stretch function f to be resistant to partial collisions.
Recall that f maps [bits to 2m bits. Define a partial collision of size ¢ to be
when ¢ inputs yield outputs which all have the same first m bits or which all
have the same second m bits. Actually, we will need to account for all the partial
collisions. Define Bx = {K; | (K;, K;) is a response and K; = K}. Note that
>k |Bk| is equal to the total number of queries to f. Define bx = |Bg| when
|Bk| > 2 and 0 otherwise. by is defined similarly. Let B* = 3 by + > b%.

Definition 5 (Partial Collision Security of Hash functions). A family of
hash functions onto 2m bits has Partial Collision Security of 5(m) if for any
algorithm running in time T(2m) the probability of B? exceeding T(2m) is at
most T'(2m)/s(m).

To give an example of this definition let us apply it to a random function,
where T'(2m) just becomes the number of queries ¢. In such a case the partial
collision security is 2 /4. To see this, it can first be shown that for a random
function the expected value of Y . b% is at most 2™ > "._,(q/2™)" < 2-¢*/2™,
where the last inequality follows whenever ¢ < 2™ /2. The same holds for) b%—(.
Hence, the probability that B? exceeds ¢ is at most 4-¢/2™ which yields a partial
collision security of 2™ /4.

The following theorem shows that if the running time of an adversary is
0(2™), o(s(2m)), and o(8(m)) then it can only find a collision with probability

o(1).

Theorem 6. If [has collision security s(2m) and partial collision security
3(m), and h is a random function then any algorithm running in time T (2m)
will find collisions with probability at most

(T(2m)/s(2m))* + T(2m)/5(m) + T(2m) /2" + (T(2m)/2™)?

New Constructions for Secure Hash Functions 161

Proof: Suppose an adversary running in time 7" finds collisions on H. There are
three cases.

Case 1: The adversary finds a collision on f. By assumption this happens
with probability at most (T'(2m)/s(2m))?2.

Case 2: The adversary finds partial collisions of f. For each K with by > 1,
the adversary will get a collision on y and have a probability of a collision on g at
most 27"b%. An analogous statement holds for each K with bg > 1. So, in this
case the probability of a collision on the output is 27" B2. By assumption B2
exceeds T with probability at most T'/5. Hence, this case occurs with probability
at most T/5 4+ T/2™.

Case 3: The adversary finds no collisions or partial collisions on f. Since h is
random function, the probability of a collision is ¢%/22", where ¢ is the number
of input output pairs of f computed by the adversary. Since ¢ is always bounded
from above by T, this yields an upper bound on the probability for this case of
(T/2m)2. O

4 Constructions Based on Imperfect Random-Function
Models

Here we suggest simple constructions and heuristics to construct new hash func-
tions using the old ones, so that the new one may be hard to break even if one
or more of the old ones come under attack.

4.1 Composition Construction

Let f and g be two functions from finite binary strings to n bits. Then define

By inversion security of a one-way function f, we mean a lower bound s;(L)
on the time to find an L-bit inverse of the function on all but a negligible
fraction of the instances y = f(x), where z is a randomly chosen L-bit string.
The collision security of a hash function f is a lower bound s;(n) on the time
required to find two inputs z; and x5 such that f(x1) = f(z2). We first claim
that the above construction at least preserves security. Note the symmetry: we
need not know which of the functions is more secure, either with respect to
collisions or with respect to inversion.

Lemma 7. If f and g are collision-resistant hash functions, then H is collision-
resistant. Moreover its inversion security and collision security are not lower
than that of either f or g. lLe.,

su(n) = Maz(sy(n), s4(n)), su(n) = Max(sg(n), s4(n))

162 William Aiello, Stuart Haber, Ramarathnam Venkatesan

Proof: Indeed, if H(z1) = H(xz2) is a collision for H, then we get a g-collision
at y = g(r1) = g(x2) and an f-collision at z = f(y,z1) = f(y,x2). Similarly for
the inversion security. a

It seems to be essential to use = twice in this construction. The inversion
security of H is never more than twice the maximum of the two. In the random-
function model the composition of two functions usually causes more collisions,
which makes it easy to distinguish a composition from a truly random func-
tion; however, here we are interested in the difficulty of finding collisions. Since
the number of rounds in H is the sum of the rounds in f and g, one would
heuristically expect the resultant function to be stronger.

Now we would like to obtain f and g that behave as if they were “indepen-
dent.” If the functions behaved almost like “random functions” then of course
the construction would be secure. We want to provide a formal background for
analyzing this. For this we use the model of imperfect random functions for the
primitives. Any existing primitive with an estimated security (at least currently)
can be thought of as an imperfect random function with appropriate parame-
ters. For this we define two measures. First we consider a simpler (but more
restrictive) bit-level parameter. We define the bias of a Boolean-valued random
variable § to be Pr[f = 1].

Definition 8. A function is called p-random if its output bits have bias p and
are independent (0 <p <1).

Needless to say, considering the individual bits to be independent is less real-
istic, but it gives us a more reasonable heuristic than the perfect random function
model. These functions are easily distinguished from truly random functions (for
p# %) merely by observing the fraction of 1’s in the output strings. Considering
the output as a whole we make the following definition.

Definition 9. A function (with n-bit values) is called h-imperfect if its output
has min-entropy equal to hn.

Here, the min-entropy of a source that outputs strings z1,...,xy with re-
spective probabilities pq, ..., px is min{—lgp;}. Note that the individual bits of
the values of an h-imperfect function can be correlated, and they may not look at
all random. However, when it comes to collision security, h-imperfect functions
are good enough: High min-entropy is a necessary condition for a secure hash
function; for example, if the min-entropy is low, then much of the probability
may be concentrated in a small set, and it would to be easy to find a collision.
But the condition is also sufficient, as shown by Lemma [[T] below.

Obviously, a p-random function is H (p)-imperfect.

Lemma 10. A collision adversary making a total of q queries to a p-random
function will find a collision with probability at most q2/2’\H(p)/2, where p =
1/2+ € and A =1—2€e?1g,e.

Proof: Omitted due to space constraints.

New Constructions for Secure Hash Functions 163

Lemma 11. A collision adversary making a total of q queries to an h-imperfect
function (with n-bit values) will find a collision with probability at most ¢2/2"/2.

Proof: Let f be an h-imperfect function. If a string y occurs as an output of
f with probability p > 0, then we have —lgp > hn, or p < 27", And now
consider a collision adversary that makes ¢ queries to f, which we model as the
random variables Yi,...,Y,, taking respective values ¥, ...,y, in a particular
run. The expected number of colliding pairs is

—hn q —hn —hn

Sorli=v] = Sply =] < T2 = (D < e
i, i, i,

If we take ¢ = 2"/2 then the expected number of collisions is at most ¢22~"" =

1. Thus the collision security of f is at least 2""/2 as claimed. O

4.2 Construction of “Independent” Primitives

One way to view the above construction is that it takes two imperfectly random
functions and yields a function that is closer to being a truly random function.
Towards this end, consider the following construction:

H(z) = f(z) ® g()

It is relatively easy to analyze the construction at a bit level in the random-
function model.

Lemma 12. If f and g are p-random and independent, then the function f ® g
is q-random, with |1 — 2q| = (1 — 2p)2.

Proof: If a and 3 are two independent Boolean variables, both with bias p, then
a @ (3 has bias ¢ = 2p(1 — p), and ¢ satisfies |1 — 2¢| = (1 — 2p)2. O

A Boolean variable with bias p has a gap between the probabilities of occur-
rence of 1 and 0 of [p— (1 —p)| = |1 — 2p|. The significance of this lemma is that
the gap narrows quadratically as we pass from f or g to f @ g. Thus, for any p,
after k iterations of this process with independent functions narrows the gap to
11— 2p2".

However, this construction of H does not allow us to make a claim as in
the above lemma, when we move from the idealized random-function world to a
complexity-theoretic world where the functions involved are specific presumably
collision-secure functions. That is, you can not show that H is collision-secure
if f or g is. However in an imperfect random function model it is easy to show
the following.

Given two imperfect random functions f and g, the expected number of
queries to find collisions for H and H is the same in both cases. Thus the
construction for H is “better” in that it allows us to analyze its security both in
the complexity and in the random-function worlds. But we now show that the
H construction has the surprising result of creating independence.

164 William Aiello, Stuart Haber, Ramarathnam Venkatesan

Intuitively, we say that f is independent of ¢ if the provision of an oracle for
finding collisions for f does not help in finding collisions for g. Note the asym-
metry in the definition; for technical reasons, we must allow for the possibility
that a collision-finder for g may help to find collisions for f.

Definition 13. A collision oracle for f is a function from i to the set of finite
binary strings. On input (i,k) it outputs a set S; = {x1,...,z;} C {0,1}F
(2 < j < k) such that f has the same value on all points from the set. The set
are distinct: for i # j, the sets S; and S; are unequal. The charge for a sequence
of queries is the sum of |S;|.

We say that [is T-independent of g if, given a collision oracle for g, one
incurs a charge of at least T for the calls to the oracle to find a collision for f.
We say that f is independent of g if g is h-imperfect and f is T-independent of
g with T = 2(2"/2)

Now we claim the following. Let f and g be a-random and b-random respec-
tively. Then H is T-independent of f, where T is the collision security of g.
Similar comments apply for independence with respect to f. To see this, assume
we are given an oracle for g to find collisions. H collides on the outputs of the
oracle if and only if f collides on them as well. We can give similar constructions
and results for imperfect random functions.

Thus in the imperfect oracle model, finding collisions for one of the functions
does not help in finding collisions for the composite function at all, when the
collision finder is used as a black box. Using this as a heuristic, if one takes
f,g as SHA-1, MD5, and both are broken, then H would still need many calls
to the collision finders, if the outputs of these functions behave approximately
randomly even to a mild degree. This is helpful even if one of the hash functions
is weak, for example, breakable in 235 steps. In this case, finding collisions for
the combination may still be infeasible.

For more detailed discussion and schemes based on these considerations, see
the full version of this paper.

Acknowledgments: We thank Bart Preneel for helpful discussions. The
third author thanks Yacov Yacobi, whose questions regarding a smart-card ap-
plication provided the initial interest in this problem.

References

AV 96. W. Aiello and R. Venkatesan. Foiling birthday attacks in length-doubling
transformations. In Advances in Cryptology— Eurocrypt ’96, Lecture
Notes in Computer Science, Vol. 1070, ed. U.M. Maurer, pp. 307-320
(Springer-Verlag, 1996).

AB 96. R. Anderson and E. Biham. Tiger: A Fast New Hash Function, In Fast
Software Encryption 3, Lecture Notes in Computer Science, Vol. 1039
(Springer-Verlag, 1996).

BGV 96.

BP 95.

BCT 88.

BY 90.

C 85.

Dam 87.

Dam 89.

Dob 96a.

Dob 96b.

Dob 96¢.

Dob 97.

Dob 98.

DBP 96.

GGH 96.

KP 97.

New Constructions for Secure Hash Functions 165

A. Bosselaers, R. Govaerts, J. Vandewalle. Fast hashing on the Pentium.
In Advances in Cryptology—Crypto 96, ed. N. Koblitz, Lecture Notes in
Computer Science, Vol. 1109, pp. 298-312 (Springer-Verlag, 1996).

A. Bosselaers and B. Preneel (eds.). Integrity Primitives for secure in-
formation systems: Final report of RACE Integrity Primitives Evaluation
(RIPE-RACE 1040), Chapter 3: RIPEMD. Lecture Notes in Computer
Science, Vol. 1007 (Springer-Verlag, 1995).

B. O. Brachtl, D. Coppersmith, M. M. Hyden, S. M. Matyas, Jr.,
C. H. W. Meyer, J. Oseas, Sh. Pilpel, and M. Shilling. Data authentication
using modification detection codes based on a public one way encryption
function. U.S. Patent No. 4,908,861, issued March 13, 1990. (Described
in: C. H. Meyer and M. Shilling, Secure program load with modification
detection code, In Securicom 88: 6éeme Congrés mondial de la protection
et de la sécurité informatique et des communications, pp. 111-130 (Paris,
1988).)

G. Brassard and M. Yung. One-way group actions. In Advances in
Cryptology—Crypto 90, Lecture Notes in Computer Science, Vol. 537,
pp. 94-107, (Springer-Verlag, 1991).

D. Coppersmith. Another birthday attack. In Advances in Cryptology—
Crypto 85, Lecture Notes in Computer Science, Vol. 218, pp. 14-17,
(Springer-Verlag, 1986).

I. Damgard. Collision-free hash functions and public-key signature
schemes. In Advances in Cryptology—FEurocrypt 87, Lecture Notes in
Computer Science, Vol. 304, pp. 203-217, Springer-Verlag (1988).

I. Damgard. A design principle for hash functions. In Advances in
Cryptology—Crypto °89, Lecture Notes in Computer Science, Vol. 435,
pp. 416427, Springer-Verlag (1988).

H. Dobbertin. Cryptanalysis of MD4. In Fast Software Encryption, Lec-
ture Notes in Computer Science, Vol. 1039, ed. D. Gollman, pp. 53-69,
Springer-Verlag (1996).

H. Dobbertin. Cryptanalysis of MD5 compress. Rump Session of
Eurocrypt '96, presented by B. Preneel (May 1996). (Available at
http://www.iacr.org/conferences/ec96/rump/.)

H. Dobbertin. The status of MD5 after a recent attack. CrytoBytes, Vol. 2,
No. 2 (Summer 1996). (Available at http://www.rsa.com/rsalabs/-
pubs/cryptobytes/.)

H. Dobbertin. RIPEMD with two-round compress function is not collision-
free. Journal of Cryptology, Vol. 10, No. 1, pp. 51-69 (1997).

H. Dobbertin. The first two rounds of MD4 are not one-way. In Fast
Software Encryption, Lecture Notes in Computer Science, Springer-Verlag
(to appear).

H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A strength-
ened version of RIPEMD. In Fast Software Encryption, Lecture Notes in
Computer Science, Vol. 1039, pp. 71-82, Springer-Verlag (1996).

O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from
lattice problems. Theory of Cryptography Library, Record 96-09. (Avail-
able at http://theory.lcs.mit.edu/ tcryptol/.)

L. Knudsen, B. Preneel. Fast and secure hashing based on codes. In Ad-
vances in Cryptology—Crypto ’97, Lecture Notes in Computer Science,
Vol. 1294, pp. 485-498, Springer-Verlag (1997).

166 William Aiello, Stuart Haber, Ramarathnam Venkatesan

MMO 85.

MOV 97.

Merk 80.

Merk 89.

Merk 90.

MH 81.

MOI 90.

NY 89.

NIST 94.

PV 96.

Pre 93.

Pre 97.
PGV 93a.

PGV 93b.

R 78.

RP 95.

Riv 90.

Riv 92.

S.M. Matyas, C.H. Meyer, and J. Oseas. Generating strong one-way func-
tions with cryptographic algorithm. IBM Technical Disclosure Bulletin,
vol. 27, pp. 56585659 (1985).

A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptog-
raphy (CRC Press, 1997).

R.C. Merkle. Protocols for public key cryptosystems. In Proc. 1980 Sym-
posium on Security and Privacy, IEEE Computer Society, pp. 122-133
(April 1980).

R.C. Merkle. One-way hash functions and DES. In Advances in
Cryptology—Crypto ’89, Lecture Notes in Computer Science, Vol. 435,
pp. 428-446 (Springer-Verlag, 1990).

R.C. Merkle. A fast software one-way hash function. Journal of Cryptol-
ogy, Vol. 3, pp. 43-58 (1990).

R.C. Merkle and M. Hellman. On the security of multiple encryption.
Communications of the ACM, Vol. 24, No. 7, pp. 465-467 (July 1981).
S. Miyaguchi, K. Ohta, and M. Iwata. 128-bit hash function (N-hash).
NTT Review, vol. 2, pp. 128-132 (1990).

M. Naor and M. Yung. Universal one-way hash functions and their cryp-
tographic applications. In Proceedings of the 21st Symposium on Theory
of Computing, pp. 33-43 (ACM, 1989).

National Institute of Standards and Technology. Secure Hash Standard.
NIST Federal Information Processing Standard Publication 180-1 (May
1994).

M. Peinado, R. Venkatesan. Highly parallel cryptographic attacks. In Re-
cent Advances in Parallel Virtual Machine and Message Passing Inter-
face (EuroPVM-MPI’97), Lecture Notes in Computer Science (Springer-
Verlag, 1997).

B. Preneel. Analysis and Design of Cryptographic Hash Functions.
Ph.D. dissertation, Katholieke Universiteit Leuven (January 1993).

B. Preneel, private communication (1997).

B. Preneel, R. Govaerts, J. Vandewalle. Hash functions based on block ci-
phers: A synthetic approach. In Advances in Cryptology— Crypto 93, Lec-
ture Notes in Computer Science, Vol. 773, pp. 368-378 (Springer-Verlag,
1991).

B. Preneel, R. Govaerts, J. Vandewalle. Differential cryptanalysis of hash
functions based on block ciphers. In Proceedings of the 1st ACM Con-
ference on Computer and Communications Security, pp. 183-188 (ACM,
1993).

M.O. Rabin. Digitalized signatures. In Foundations of Secure Computa-
tion, eds. R. Lipton, R. DeMillo, pp. 155-166 (Academic Press, 1978).
V. Rijmen, B. Preneel. Improved characteristics for differential cryptanal-
ysis of hash functions based on block ciphers. In Fast Software Encryption,
Lecture Notes in Computer Science, Vol. 1008, pp. 242-248 (Springer-
Verlag, 1995).

R. Rivest. The MD4 message digest algorithm. In Advances in
Cryptology—Crypto ’90, Lecture Notes in Computer Science, Vol. 537,
pp. 303-311, (Springer-Verlag, 1991).

R. Rivest. The MD5 Message-Digest Algorithm. Internet Network Work-
ing Group Request for Comments 1321 (April 1992).

Sur 95.

vOW 94.

New Constructions for Secure Hash Functions 167

Surety Technologies, Inc. Answers to Frequently Asked Questions about
the Digital Notary™ System. http://www.surety.com (since January
1995).

P. van Oorschot and M. Wiener. Parallel collision search with applica-
tions to hash functions and discrete logarithms. In Proceedings of the 2nd
ACM Conference on Computer and Communication Security, pp. 210-218
(ACM Press, 1994).

	Introduction
	New Constructions
	Imperfect Random-Function Model Constructions

	Preliminaries
	New Constructions: Definition and Analysis
	Definition
	Analysis Assuming f and h Are Random Functions
	Analysis with Weaker Assumptions

	Constructions Based on Imperfect Random-Function Models
	Composition Construction
	Construction of ``Independent'' Primitives

