Attacking Triple Encryption

Stefan Lucks*

Theoretische Informatik
Universitat Mannheim
68131 Mannheim A5, Germany
lucks@pi3.informatik.uni-mannheim.de

Abstract. The standard technique to attack triple encryption is the
meet-in-the-middle attack which requires 212 encryption steps. In this
paper, more efficient attacks are presented. One of our attacks reduces
the overall number of steps to roughly 2'°®. Other attacks optimize the
number of encryptions at the cost of increasing the number of other
operations. It is possible to break triple DES doing 2°° single encryptions
and no more than 2'3 faster operations.

1 Introduction

The most well-known symmetric encryption algorithm is the Data Encryption
Standard (DES). It defines a block cipher with 64-bit blocks and 56-bit keys.
Due to questions raised regarding the small key size, several varieties of multiple
encryption have been considered for the DES, including double and triple DES.

Fig. 1. Double encryption (top) and triple encryption (bottom)

L M
v v

P— El —_— E2 —C

P——»| E' |—>A——| E* |—>B——| E* |——>C

In this paper, we consider arbitrary single encryption functions E{0,1}* x
{0,1}* — {0,1}* with k-bit keys and a block size of s bits, and in particular

* A part of this research was done while the author was at the University of Gottingen.

S. Vaudenay (Ed.): Fast Software Encryption — FSE’98, LNCS 1372, pp. 239-253] 1998.
© Springer-Verlag Berlin Heidelberg 1998

240 Stefan Lucks

point out the consequences of our findings for triple DES. Since multiple encryp-
tion is mainly of relevance to strengthen block ciphers with a small key space,
we concentrate on k < s. With two k-bit keys L and M and two encryption
functions E' and E?, double encryption is defined by C' = E3,(E:(P)). Here, C
denotes the ciphertext and P the plaintext. Similarly, triple encryption is defined
by C = E3;(E3,(E:(P))). Figure [describes double and triple encryption. If
L = N, this defines the special case of two-key triple encryption. In this paper,
we concentrate on the case of general (three-key) triple encryption.

Double DES is double encryption with E! = E? = E. Triple DES is usually
defined by E! = E® = E, E? = D, where E denotes the (single) DES encryption
function and D its decryption counterpart.

In general, we assume the functions E? and D’ to behave like a set of 2*
random permutations E% with K € {0, 1}*, chosen according to the uniform
probability distribution. Usually, nonrandom statistical properties are consid-
ered to be weaknesses of block ciphers. In the special case of the DES, two im-
portant statistical weaknesses are known, the complementation property, which
is exploited in Section [0l of this paper, and a small number of weak keys.

All attacks considered in this paper are key-search attacks and exploit known
(or chosen) pairs of plaintext and ciphertext. To measure the complexity of an
attack, we consider four values:

1. The number of known plaintext-ciphertext pairs.

2. The storage space required for the attack.

3. The number of single encryptions y := E% (z) or z := D% (y) to mount the
attack.

4. The overall number of operations (“steps”) to mount the attack.

The third value demands some explanation: Clearly, given a key K and a plain-
text x (or a ciphertext y) the attacker can compute the corresponding ciphertext
y := B (x) (or the corresponding plaintext). A good block cipher behaves like
a random permutation, hence given some triples (plaintext,ciphertext,key) one
can’t find other triples more efficiently than by encrypting/decrypting again.

Attacking multiple encryption without breaking the underlying encryption
function can be described as attacking multiple encryption in the presence of
encryption/decryption oracles. Figure Plvisualizes such an oracle. The underlying
cipher is treated as a black box. We simply write “single encryption” for accessing
the encryption/decryption oracle. Much work has been done with respect to this
model.

This view also motivates to specifically count the single encryptions, in addi-
tion to counting all steps. Note that such a single encryption counts as one step,
but in practice is an exceptionally complex step by itself, compared to common
operations like comparisons and table look-ups.

One may as well concentrate on the number of single encryptions and disre-
gard the number of steps and the amount of space required. This is an approved
method for estimating the minimum strength of a composed cipher, in order
to demonstrate the soundness of the composition technique. In this context,

Attacking Triple Encryption 241

Fig. 2. An encryption/decryption oracle

Key K

\

value v —| E'/D" |— result r = E%(v) if d = encrypt
and 7 = D% (v) if d = decrypt

direction d

one neglects possible weaknesses of the underlying encryption functions. Ide-
alizations of the underlying encryption functions are accessible to the attacker
by querying encryption/decryption oracles, but the attacker has no knowledge
about the oracles’ internals. In the sequel, we refer to this point of view as the
“black-box-only” model.

The rest of this paper is organized as follows. Section [J describes previously
known attacks, concentrating on the meet-in-the-middle attack. In Section [B]
we introduce the notion of “t-collisions” and use it for a technique to reduce
the number of steps. In Sections M and Bl we consider that single encryptions are
much slower than each of the other steps, and we design attacks optimized to save
single encryptions (but not the total number of steps). In Section [we exploit
the complementation property of DES and triple DES to further improve our
attacks. Finally, in Section [f] we concentrate on the consequences of our findings
for the security of triple DES.

2 Previous Work

Double encryption can be broken with meet-in-the-middle (MITM). This attack
requires [2k/s] known plaintext/ciphertext pairs on the average, about 2% units
of storage, about 2* single encryptions, and about as much steps. For a plaintext
p and a corresponding ciphertext ¢, compute all values I, = E} (p) and store all
pairs (I, L) in a table, indexed by Ir. Since there are 2F keys L, this requires 2%
units of storage, 2¥ steps and 2* single encryptions. Now, all values I ' =D3,(c)
are computed. For the correct key pair (L, M) the equation I, = I}, must hold.
Thus the attacker needs to look up I}, in the previously computed table of pairs
(Ir,L).

Two-key triple encryption can be broken by a chosen plaintext attack using
about 2* units of everything: 2 plaintext/ciphertext pairs, 2¥ units of storage,
2" single encryptions, and 2* steps, see [f].

The best known way to attack general triple encryption is also by MITM [4]
Section 7.2.3]. Let a plaintext/ciphertext pair (p, ¢) be given. Proceed as follows:

242 Stefan Lucks

1. Compute all values by = D3(c), N € {0,1}*, and store the pairs (by, N) in
a table, indexed by by.

2. Compute all values by, s = E%,(Fi(p)) with L, M € {0,1}*, and look for
(bram, N) in the previously computed table of pairs (by, N)

3. Test all key triples (L, M, N) with by s = by until only one such triple
remains.

The first stage requires about 2% steps and single encryptions and as much units
of storage. The second requires about 2%* steps and single encryptions. The
third stage is cheap. Note that we need at least | > [3k/s] pairs of plaintext and
ciphertext for the attack. In the case of triple DES, we need | > 3 = [3 % 56/64]
such pairs, about 2°6 units of storage, about 2''? single encryptions and the
same number of steps (mainly table look-ups). (The expected number of steps
and single encryptions needed for the MITM attack is 2!'!. This is the number
we use when comparing the MITM attack with our probabilistic attacks.)

Advanced MITM techniques for attacking two-key triple encryption have
been studied by van Oorschot and Wiener [6]. The same authors also proposed
advanced MITM techniques for attacking double encryption [7].

Kelsey, Schneier, and Wagner [2] demonstrated how to attack three-key triple
DES using related-key techniques. Let a plaintext p and a corresponding cipher-
text ¢ be known to the attacker. Assume the attacker to be able to change the
first subkey from L to L + A (both L and L + A unknown to the her, but A
known). If the attacker receives the decryption of ¢ under the modified key, then
she can find the subkey L using only 2* steps (and the same number of single
encryptions). The second and third subkeys M and N can be found as in the
case of double encryption.

If the same plaintext is encrypted 228 times using triple DES under 228
different keys, an attacker can recover one of the 228 keys using 2%* steps (and
the same number of single encryptions). This result is due to Biham [IJ.

DESX is a variant of DES, where encrypting and decrypting requires to com-
pute one single encryption and two XORs of s-bit blocks. Kilian and Rogaway
[B] describe the security of DESX in the black-box-only model, concentrating
on finding a lower bound for the number of single encryptions every black box
attack needs.

3 How to Save Steps

In this section, we describe an “operation optimized” attack to save some steps
of computation, compared to MITM.

Consider a function f : {0,1}* — {0,1}°. A collision is a pair z,y of
inputs with « # y and f(z) = f(y). The value v € {0,1}° is associated with
a t-collision, if there exists a set S with |S| > ¢ inputs and f(x) = v for all

! When computing the complexity of this stage, the operation of computing a value
br.m = E3(EL(p)) and looking up the pair (br,, a7, N) in a table and the operations
to maintain the loop together count as one step.

Attacking Triple Encryption 243

x € S. Assuming the function f : {0,1}* — {0,1}° to behave like a random
function, and that 1 < w < 2! inputs are randomly chosen, the expected number
of values v € {0,1}* associated with a t-collisiond is about wt * 2=~ Given
plaintext/ciphertext pairs (p;,¢;), our attack depends on finding ¢-collisions for
the functions f,, : {0,1}* — {0,1}*, f,,(L) = E}(p;). We consider all keys
L € {0,1}*, hence the number of inputs for the function f,, is w = 2*.

We write K (a,) for the set of all keys which encrypt the plaintext p; to the
ciphertext a using E'. Similarly, we write K3(b,4) for all keys which decrypt the
ciphertext ¢; to b, using F3. Le.,

Ki(a,i)={ Le{0,1}* | EL(p;) =a } and
K(b,i)={ Ne{0,1}* | E}(b) =¢; }.

If | K (a,i)| > t, the value a is associated with a t-collision. Given a pair (p;, ¢;),
we choose set S (i) C {0,1}* of values associated with ¢-collisions:

Sa(i) = { a € {0,1}* | there exists a t-collision K(a,i). }.
Our attack works like this:

1:=1;
Repeat:
let (pi,ci) € ({0,1}°)? be a known pair of plaintext and ciphertext;
initialize the sets K1 (-,), K3(,7), and Sa(%) to be empty;
A. for L € {0,1}*: a:= Ei(p;);
Ki(a,i) := Kq(a,i) + {L};
if |K1(a,i)| >t then Sa(i) := Sa(i) + {a};
(* Now S4(7) is the set of all values a associated with a ¢-collision. *)
for N € {0,1}*: b:= D3 (c:);
Kb, i) = Ks(b,i) + {V};
B. for a € Sa(4):
for M € {0,1}*: b:= E2,(a);
for N € K3(b,1):
for L € Ky(a,i): tripletest(i, L, M, N);
t:=14+1;
until tripletest accepts.

The procedure “tripletest” can be realized like this:

tripletest(i, L, M, N) is
Spo= {1, 1} — {i:
d:=3k—s+9;
repeat: choose j € Sy at random;

2 Cf. Rivest and Shamir [8], who exploit this for one of their micropayment schemes. To
verify this estimation, one can use a well known special case, the “birthday paradox”:
The ezpected number of inputs for f until the first 2-collision occurs is c * 2°/ with
a small constant c. (Actually, c = y/m/2 = 1.25, cf. [4] Section 2.1.5]).

244 Stefan Lucks

Sr=5Sr—{j}
c:= E} (B3 (EL(p))));
d:=d-s;

until (d <0) or (¢; # ¢);
if (¢; = ¢) then accept (L, M, N) as the correct key-triple and stop
else reject (L, M, N) and continue.

When “tripletest” is called, the equation
EX (B3 (EL(p))) = i

holds. In the procedure, we are looking for j # i such that E3 (E3,(E}(p;))) #
¢;. If we fail often enough, i.e., {ww times, we accept the key-triple (L, M, N)
as correct. The value § serves as a security parameter, the risk to accept an
incorrect key-triple is no more that 279.

On the average, a wrong key-triple requires insignificantly more than three
single encryptions, i.e., one computation of ¢ := .. ., since for j € {1,...,1} —{i},
the equation EX (E%,(E}(p;))) = ¢; holds one out of 2% times. The correct triple
is always accepted after {%_57”'51 rounds. E.g., two rounds are sufficient for triple
DES (k = 56 and s = 64) if 6 = 20. In the sequel, we assume § to be “large
enough” and ignore the risk of accepting an incorrect key-triple.

Let t be chosen such that w? x 275(-1) « 9k

Theorem 1. The expected number of pairs (p;,c;) for the operation optimized
attack to succeed is 2F /(w' x 27°¢=1¢t) (except for a small factor).

Sketch of proof. Every t-collision K;(a,1) € S4(i) consists of at least ¢ keys and
hence has at least a t* 2% chance to contain the correct first key L. Every index
i corresponds to a pair (p;, ¢;) of plaintext and ciphertext. For every i, we expect
to find about w! * 27°¢=1) values a to be associated with a t-collision K (a,i).
Thus the expected number of (plaintext,ciphertext)-pairs we need to consider in
order to find the correct first key L is 2% /(wt x 275(t=1)¢).

It is easy to verify the following: If (L,M,N) is the correct key triple,
Ki(a,i) € Sa(i) and L € Ky(a, 1), then the procedure tripletest(i, L, M, N) is
executed in stage B with the index ¢ and the keys (L, M, N) as parameters. 0O

Theorem 2. With [pairs (p;,c;), the operation optimized attack requires the
following resources:

— O(2%) units of storage space, and
— O(wx 275D 5 2k 4 | Lt % 275D w [5 x 22575) steps (and as much single
encryptions).

Proof. Both stages are to be executed [times. During every iteration of the
“Repeat” loop, no results of previous iterations are needed. Hence, the amount of
storage for the attack can be estimated by the storage space during one iteration,
and the required number of steps is [times the average number of steps during

Attacking Triple Encryption 245

one iteration. Below, we estimate the storage space and the number of steps for
one such iteration.

Both loops of stage A are iterated 2* times, hence the number of steps is
about 2%2%. When the first loop is finished, the storage space for the sets K (a, i)
(i.e., 2% units) is no longer needed, and can be reused, with the exception of the
sets K(a,i) € Sa(i). For the second loop, 2* units of storages space are needed
for the sets K3(-,i). Since w’ x 275(¢~1) <« 2¥ we expect the probability for
|S4(7)| > 2F to be negligible, and we approximate the storage space for stage A
by 2F.

Now, we consider stage B. For every pair (p;,c;) we expect the existence of
wt % 2751 tcollisions; thus the loop “for a € S, (i)” is iterated wt x 2~(—1
times on the average. The loop “for M ...” is iterated 2* times, hence, w! *
2-s(t=1) 4 9 gingle encryptions b = E2,(a) are done. So far, we need w! *
275(t=1) 4 2k steps. The expected size of a set K3(b,i) is 2F7° < 1. K;(a,1) is a
t-collision, thus it contains about ¢ keys L, and the procedure tripletest is to
be called w? % 275¢=1) 4 9k 4« 2k=s 4 ¢ times.

During each of the iterations of stage A and B and hence during the complete
algorithm ©(2%) units of storage space are needed, and the number of steps is
10(2F +w? + 27501 5 2k gyt 5 275(=1) 5 Ok 4 9k=5 4) = Q(wt x 27511 4 2k 4
wh 27501 4 2K 4 9k=5 4 ¢) similarly to the number of single encryptions. 0O

The constants hidden by the asymptotics are small. Given [pairs of plaintext
and ciphertext, we need about 2 units of storage space—as is the case for the
MITM attack. The number of steps is STEPS 4 +STEPS% —i—STEPSiB. Here STEPS 4 ~
2% [% 2% is the number of steps steps for stage A, STEPS% & [+ w! x 2751 5 ok
is the number of steps for the outer loops of stage B (i.e., the number of times
the operation b := E2,(a) is executed), and STEPS}; &2 3% [w! x275(0—1) 5 92k—s
is the number of steps for all loops of stage B and for tripletest.

For triple DES (k = 56 and s = 64) expected number of ¢-collisions is about
2kt 4 2—5(t=1) If ¢ = 8, then 25 %27 5(t=1) = 20 — 1 we expect one 8-collision, the
attack requires about 2°¢ units of storage space, and for [= 2% /(w!*25(¢=1¢) =
253 we need about STEPS4 ~~ 2'10 steps (mainly table look-ups and single en-
cryptions) for the attack—instead of 2'!! similar steps for MITM.

We can improve this by choosing ¢ = 7: The expected number of 7-collisions
is 2kt 4 2—s(t=1) — 98 — 956, Again, the attack requires about 2°6 units of storage
space. For [= 2% /(w! % 275(t=D¢) = 256 /(256 x 8) = 2%° we get STEPS 4 ~ 2102,
STEPSY; = 3 % 2194 and

STEPSY ~ 1« w' s 275(71) 4 ok
= (2" /(w" % 27507 D1)) st 5 2750 o

_ 22k/7 — 2112/7
~ 2109.2

thus we only need slightly more than 2!%9 steps (and as much single encryptions).
From a practical point of view, the operation optimized attack is not very
useful for breaking triple DES. It is faster than MITM, but requires much more

246 Stefan Lucks

pairs of known plaintexts/ciphertext (e.g., about 2% if t = 7, compared to 3 for
MITM). But from a theoretical point of view, the attack’s performance clearly
indicates triple DES to be weaker than widely believed.

4 How to Save Single Encryptions

The previous section’s technique to reduce the number of steps seems to be
at a dead end. So in the next two sections, we concentrate on reducing the
number of single encryptions instead the number of steps. This section deals
with an “encryption optimized” attack. Instead of I sets S4 (i) depending on p;,
we choose one fixed set S4 and no longer exploit the occurances of t-collisions.

Let there be [plaintext/ciphertext pairs (p1,c1), ..., (pi,¢) known to the
attacker. In the previous section, we computed a set Sa(i) C {0,1}® for every
index i € {1,...,1}. Now instead, we choose one set Sy = S4(1) =--- = S4(1).

The size |Sa| of Sa is fixed and |Sa| < 2°. We assume the a € Sy to be
chosen randomly. (We use the independence of the sets S4 and {a € {0,1}* |a =
E1(pi)}, where L denotes the correct first key.) Our attack consists of three
stages:

1. For a € S4: compute the sets
Si(a)={ (i, L) € {1,...,1} x {0,1}* | EL(p;) = a }.
2. For b€ {0,1}® and ¢ € {1,...,1}: compute the sets
K3(b,i)={ N €{0,1}* | E{(b) = ¢ }.

3. For M € {0,1}* and a € Sy:
b= Ef(a);
for (i, L) € Si(a):
for N € Ks5(b,1):
tripletest(i, L, M, N).

What is the chance to find the correct key by using the algorithm?

Theorem 3. If|S4| = 2%/, the encryption optimized attack’s probability to find
the correct key-triple is close to 1/2.

Sketch of proof. The attack succeeds in finding the correct key triple (L, M, N),
if for any 7 € {1,...,l} the operation “tripletest(i, L, M, N)” is executed, i.e.,
if a pair (i,a) exists in {1,...,l} x S4 with E} (p;) = a. The existence of such a
pair can be expected if I x |Sa| = 2° (due to the birthday paradox). O

One of the resources required to mount the attack is the number [of known
plaintext/ciphertext pairs. What about the other resources?

Theorem 4. If |Sa| ~ 2°/l, s > k and 2?%=% > [> 22572% the encryption
optimized attack requires the following resources:

— Ezactly | known plaintext/ciphertext pairs,

Attacking Triple Encryption 247

— O(1 * 2F) units of storage space,
— O(2%%) steps,
— and 6(2%¢=%) single encryptions.

Proof. Let the sets S1(-) and K3(-,-) be initialized to be empty. The first two
stages can be realized like this:

1. Forie {1,...,l} and L € {0,1}*: a := E}(p;);

Si(a) == Si(a) +{(i,L)}.

(* Or: If a € S4, then S1(a) :=... %)
2. Forie{l,...,l} and N € {0,1}*: b := D%/(c;);

K3(b,i) := K3(b,i) + {N}.

Each loop is iterated [s 2* times, hence the overall number of elements in the
sets K3(-,-) are [* 2%, the overall number of elements in the sets S;(-) is the
same (but we only need the sets Sy(a) for a € S4), and the number of steps and
single encryptions for the first two stages is O(* 2%).

Stage 3 requires much less storage than the first two stages. Its outer loop
“For M € {0,1}* and a € Sa” is iterated 2% % [S4| ~ 2¥+%/I times. On the
average, the middle loop “for (i, L) € Si(a)” is iterated [x 2¥/2% times, and
the inner loop “for N € K3(b,i)” is iterated 2¥~* times. Since 28=% < 1, the
outer and the middle loop determine the number (2% x [S4|)(I * 2F/2%) ~ 22k
of steps for stage 3. But for the single encryptions, we count how often the
operation “b := E2%,(a)” is executed in the outer loop (i.e., 2¥%|S4| ~ 25+ /1) and
add three times the number the operation “c := E3%,(E3;(EL(p;)))” is executed
within the procedure tripletest (i.e., 3(2% % |Sa|)(I %2k /2%)(2F7%) ar 3% 23k—%).
If I > 22572k a5 required, the tripletest part dominates the sum, i.e., the
number of single encryptions in stage 3 is about 3 x 23#=% = ©(23k—9).

Thus the storage requirement for the attack is dominated by stage 2, the
number of steps and the number of single encryptions are dominated by stage
3. Hence we need O(I * 2F) units of storage space, ©(22*) steps and especially
O(23k=#) single encryptions. 0

As one can easily deduce from the proof, the constants hidden by the asymp-
totics are small. We need about [*2F units of storage, about 22* steps, and about
3% 23k=5 1 2F+5 /] single encryptions. For triple DES, we may choose [within the
range 216 <1 < 243, Given, say, | = 2'6 known pairs of plaintext and ciphertext,
we need roughly 272 units of storage (mainly for the elements of the sets K3(-,-)),
cycle through a loop for about 2112 times, and have to encrypt/decrypt about

3 % 23kfs + 2k+s/l iy 2k+1

~ 3% 2104 + 2104 + 273
~ 2106

times.

Unlike the operation optimized attack, in which we decreased the number of
steps, this section’s encryption optimized attack reduces the number of single
encryptions but not the number of steps. This optimization reduces the time of
the attack as single encryptions are considerably slower than other operations.

248 Stefan Lucks

5 How to Save more Single Encryptions

The encryption optimized attack’s efficiency is limited, since tripletest is ex-
ecuted 23*~% times, which induces 3 * 23*=% single encryptions. As we argued
in the sketch of proof of theorem Bl the correct key triple (L, M, N) is found
“f a pair (i,a) exists in {1,...,1} x Sa with E}(p;) = a.” In this section,
we modify the attack; we only execute tripletest if there exist two pairs
(i,a),(j,a’) € {1,...,1} x Sa with E}(p;) = a and E}(p;) = o/. This idea
leads to the “advanced attack”. (More generally, we execute tripletest if r
pairs (i1,a1), ..., (ir,a,) with E}(p;) = a; exist in {1,...,1} x S4. In this pa-
per, we concentrate on 7 € {1,2}.) On one hand, this forces us to increase the
number of known plaintext/ciphertext pairs (p.,c.) in order to succeed. On the
other hand, we need to execute the tripletest much less frequently.

The first two stages are the same as before, for stage 3 we do the following;:

3. For M € {0,1}*:

S=A{k
for a € Sa:

b:= E3(a);

for (i,L) € Si(a):

for N € K3(b,1):
if (L, N) € S then tripletest(i, L, M, N)
else S:=S+{(L,N)}.

Theorem 5. If |Sa| =~ 2% 2%/l, the advanced attack’s probability to find the
correct key-triple is close to 1/2.

Sketch of proof. Let (L,M*, N) denote the correct key triple. We consider
the iteration of the loop “For M € {0,1}*:” with M = M?*, all other itera-
tions cannot succeed anyway. If |[S4| &= 2 % 2%/, the expected number r of pairs
(i1,a1), .., (ir,ar) € {1,...,1} x Sy with E} (p;) = a; is r = 2. If there actually
exist two such pairs (i1,a1) and (ia,a2) in {1,...,l} X Sy, then the following
inclusions hold

(’il,L) S Sl(al), N S Kg(E%/[(al),il),
(i27L) S Sl(ag), and N € Kg(Eﬂ(al),Zg)

In this case, the key pair (L, N) is found twice within the execution of the
algorithm. At first “(L,N) € S” is wrong and (L, N) is inserted into the set
S. The second time “(L,N) € S” is true, tripletest(i, L, M, N) is executed
(with ¢ € {i1,i2}) and accepts because (L, M,N) = (L, M*, N) is the correct
key triple. O

Theorem 6. If [Sa| ~ 2°T1/l, the advanced attack requires the following re-
sources:

— Ezactly | known plaintext/ciphertext pairs,

Attacking Triple Encryption 249

— O(1 * 2%) units of storage space,
— O(2%%) steps,
— and O(1 % 2F + 2k+3 /1) single encryptions.

Proof. The resource requirements for the first two stages of the advanced attack
are the same as for the encryption optimized attack.

In the third stage, and for fixed M and a, the loop “for (i,L) € Si(a)” is
iterated about [* 28=¢ times, the inner loop “for (L, N) € S” is iterated about
2F=s times. Hence the size of the set S is roughly |S| ~ [* 226725 < [. The
sets K3(-,-) require [x 2¥ = O(I % 2¥) units of storage and thus dominate the
advanced attack’s storage requirements.

Similarly to the proof of theorem H the number of steps is (2% * |Sa|)(I *
2k/2s) ~ 22k+1 — @(2219)

The first two stages together require {21 single encryptions. The operation
c = E%(...) in the procedure tripletest is to be executed about 23¢—2s+1
times, inducing 3 * 23¥=25%1 gingle encryptions. The operation b := E?,(a) is
to be executed 2 x [S4| ~ 28F5T1 /] times. Since [* 281 >> 3 % 23F=25%1 the
number of single encryptions is about

l* 2k+1 + 3 % 23k72s+1 + 2k:+5+1/l ~ l* 2k+1 + 2k+s+1/17

i.e., O(1 % 2F 4 2F+s /), O
In practice, we need about [* 2* units of storage, about 22**! steps, and
about 2851/l 1+ 251 encryptions/decryptions. If we fix I = 25/2, we need

ok-+(s/2)+2

about single encryptions. (1)

For attacking triple DES, given [= 232 known pairs of plaintext and ciphertext,
we need 288 units of storage space and 213 steps, but only 2°° single encryptions.
In comparison to the operation optimized attack, the advanced attack allows us
to drastically reduce the amount of single encryptions at the cost of doubling the
number of steps. So what is our gain? As we mentioned in the introduction, a
single encryption is a very complex operation, compared to, say, table look-ups.
If we assume one implementation of DES to require 8 table look-ups per round,
i.e., 8% 16 = 27 table look-ups per encryption, our speed-up can be estimated
like this:

— The expected number of 2! steps and as much single encryptions of the

MITM attack actually correspond to about 1.3 * 2199 triple encryptions.

— The operation optimized attack of section 3 needed 2'%° steps and single
encryptions. These correspond to about 1.3 % 2197 triple encryptions.

— The encryption optimized attack’s 212 steps (mostly table look-ups) and
2106 single encryptions. This is equivalent to about 2'°° triple encryptions.

— This section’s attack requires 23 steps (mostly table look-ups) and 2%
single encryptions. This corresponds to about 1.3 * 2194 triple encryptions.

Our result [T for triple encryption (i.e. 2°° single encryptions to break triple
DES) is very close to Kilian’s and Rogaway’s lower bound [3] for the number of
single encryptions required to break DESX. For details, see appendix A.

250 Stefan Lucks
6 A Special Variant for Triple DES

So far, we pretended the underlying single block cipher to be ideal, i.e., to behave
like a random permutation. But DES is not an ideal block cipher. Most important
in this context is the complementation property: If T denotes the complement of
the bit-string z, then for every plaintext p € {0,1}* and every key K € {0, 1}*:

DESk(p) = DESg(p).

How does the complementation property affect the efficiency of our attacks?
First, we note there is not much harm for the attacker. The encryption opti-
mized attack succeeds, if the sets {pi,...,p;} and S4 are chosen such that there
exists a (i,a) € {1,...,l} x Sa with E} (p;) = a, L the correct first subkey, cf.
proof of theorem Bl This probability is not at all affected by the complemen-
tation property E%(E) = a. We may argue similarly for the advanced attack.
The success rate of the operation optimized attack depends on the probability
that for a plaintext p; the correct first subkey L participates in a t-collision
K(a,i) = {L,Ly,..., L}, i.e., Ep(pi) = EL,(pi) = ... = Ep,(pi) = a. Again,
this probability is not affected by the complementation property E%(]TZ) =a.

Second, there are many ways for the attacker to exploit the complementation
property for a small improvement of an attack. For the sake of shortness, we
concentrate on one example. Recall the attack in section Bl Let S4 be chosen
such that for all @ € {0,1}® the equivalence a € Sy <= @ € S, holds. The
attack is unchanged, except for stage B:

B. for a € S4(i):
for M € {0} x {0,1}F— %
b:= E3(a);
for N € K3(b,1):
for L € Ky(a,4): tripletest(i, L, M, N);
(x Next, we exploit b = EQM(E). *)
for N € K3(b,1):
for L € K, (a,i): tripletest(i, L, M, N);

The analysis in section [is not much affected. Neither the expected number of
pairs of plaintext and ciphertext changes, nor the complexity STEPS4 of stage
A, nor the attack’s storage requirements.

With respect to stage B, the loop “for a € Sa(i)” is iterated w® * 27
times on the average. The loop “for M ...” is only iterated 2*~! times, hence,

s(t—1)

wt % 27301 4 95—1 gingle encryptions b 1= E2,(a) are done. So far, we need
STEPSY = w' * 275(=12k—1 steps for stage B. Together, the two loops “for
N € ...” need as much time as before: STEPSyy = w! + 27571 5 2k 4 9k=s ¢,

If we choose the parameters were t = 7, v ~ 2.2, and [= 2%°, the opera-
tion optimized attack’s complexity is the sum of three numbers STEPS 4 ~ 2102,
STEPS ~ 3 % 2!94 and sTEPS) ~ 21992,

Attacking Triple Encryption 251

This section’s variant does not affect STEPS4 and STEPSiB, hence

STEPSY ~ 21082

approximates the overall number of steps and single encryptions.

7 Comparison and Conclusion

Based on today’s technology, neither MITM nor any of our attacks constitutes
a practical way to break triple DES. If in the future an attack like MITM will
be considered practical for doing this, certainly some of the required resources
will be more valuable than others. This paper provides a variety of options how
to possibly save such a bottleneck resource. A comparison is given in table[Il.

attack sect. || { | memory | steps | single encryptions
MITM 3 956 glll 9111
op. optim. 945 256 9109.2 9109.2
(variant) (2%%)| 2% 9108.2 9108.2

encr. optim. 11 l [% ok 92k 3 x 93k—s + 2k+s/l

216 272 2112 2106
224 280 2112 3 % 2104
232 288 2112 3 % 2104

advanced l 12k |22kl | [y oktl o 2]“““/[

216 272 2113 2105
224 280 2113 297
232 288 2113 290

Table 1. Attacking triple DES with | known (chosen) pairs of plaintext and
ciphertext and the expected number of resources required.

Van Oorschot and Wiener [6lJ7] considered attacks with decreased memory
requirements at the cost of increased running times. Usually, reducing storage
requirements is seen as the main goal of improving an attack like MITM. The ap-
proach in sections Ml and [l is to decrease the running time at the cost of storage.
As an anonymous referee criticized, this seems to make our attacks less realistic.
The current author’s reply is that the basic MITM attacks on double encryption

252 Stefan Lucks

and two-key triple encryption both have balanced time-memory characteristics,
i.e., require roughly one step of computation per unit of memory. In this case,
trading away storage space at the cost of additional computational steps, as
van Qorschot and Wiener did, certainly makes such attacks more realistic. On
the other hand, the MITM attack on general (three-key) triple encryption has
a highly unbalanced time-memory characteristic: 2* units of memory and 22*
steps are needed, i.e., 2 steps per unit of memory. If k is reasonably large, e.g.,
k = 56, decreasing the running time at the cost of additional memory require-
ments actually appears to make such attacks more realistic. (Today though, our
attacks are far from being practical, as is the MITM attack. It is quite difficult
to reasonably estimate the economically best time-memory characteristic of a
future technology for which such attacks are practical.)

Even though our attacks are far from being practical today, this paper demon-
strates that it is too optimistic to identify the complexity of breaking triple DES
and similar block ciphers with the complexity of the MITM attack. Also, this
paper alludes that the ability to quickly perform many single DES operations
is not crucial for breaking triple DES (though even the required number of sin-
gle DES operations is too large to be considered feasible today). The number
of memory accesses, i.e., table look-ups, appears to be dominating—with great
consequences on the difficulty of massively parallel triple DES cracking.

8 Acknowledgements

The author is thankful to Riidiger Weis for discussing DESX and very much
appreciates referees’ aid in improving the presentation of this material.

References

1. E. Biham, How to forge DES-Encrypted Messages in 22 steps, Technical report
CS0884, Computer Science department, Technion, 1996, found in the wwwh.

2. J. Kelsey, B. Schneier, D. Wagner, “Key-Schedule Cryptanalysis of 3-WAY, IDEA,
G-DES, RC4, SAFER, and Triple-DES”, Crypto ’96, Springer LNCS 1109, 237—
251.

3. J. Kilian, P. Rogaway, How to protect DES against exhaustive key search, Crypto
’96, Springer LNCS 1109, 252-267, full version found in the wwwil.

4. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of applied cryptography,
CRC Press, 1997.

5. R.C. Merkle, M.E. Hellman, On the security of multiple encryption Communica-
tions of the ACM, Vol. 24, No. 7 (1981).

6. P.C. van Oorschot, M.J. Wiener, A known-plaintext attack on two-key triple en-
cryption, Eurocrypt 90, Springer LNCS 473, 318-325.

7. P.C. van Oorschot, M.J. Wiener, Improving implementable meet-in-the-middle at-
tacks by orders of magnitude Crypto 96, Springer LNCS 1109, 229-236.

8. R.L. Rivest, A. Shamir, PayWord and MicroMint, two simple micropayment
schemes, CryptoBytes, Vol. 2, No. 1 (1996), 7-11.

3 http://www.cs.technion.ac.il/Reports/
4 http://wwwcsif.cs.ucdavis.edu/ " rogaway/papers/list.html

Attacking Triple Encryption 253

A On Triple DES and DESX

As mentioned in the introduction, the black-box-only model provides a proven
environment to demonstrate the soundness of a composed cipher. Kilian and
Rogaway [3] analyze the DESX block cipher and its security in this model. Note
that in the black-box-only model, one concentrates on the number of encryptions
and disregards all other operations.

A generalized variant of DESX is EF X, based on the encryption function E :
{0,1}*x{0,1}* — {0,1}*. An EX key is a triple (L, M, N) € {0,1}¥x{0,1}* x
{0,1}*. The encryption function is EX(y p,ny(p) = N ® EL(M @ p), where “®”
denotes the bit-wise XOR. Compared to triple DES, DESX is amazingly elegant
and efficient.

Let ! denote the number of known (or chosen) pairs of plaintext and ci-
phertext. Kilian and Rogaway prove for EX that the attacker’s advantage in
distinguishing between random nonsense unrelated to F, and EX encryptions
using a key-triple (L, M, N) unknown to the attacker, is € < [* x x g k—stl,
Here, x denotes the number of single encryptions. If e = 1/2 and [= s/2, this
requires

about x> 2F(5/2=2 " gingle encryptions, (2)

e.g., about & > 2% for DESX. (Note that Kilian and Rogaway consider k = 55
and ignore the additional key bit of DES. This is necessary for lower bounds
in the black-box-only model due to the DES complementation property.) By
presenting a chosen plaintext attack, Kilian and Rogaway also demonstrate that
the above bound is tight, except for a small factor.

Our result (@) in section[d for breaking triple encryption is surprisingly close
to Kilian’s and Rogaway’s lower bound (@) for EX. We conclude, in order to
find a combined cipher provably much more secure than EX (or DESX), one has
to abstain from triple encryption (triple DES) or to forego the black-box-only
model. In other words, this paper gives evidence that it will be difficult to prove
triple DES to be much stronger than the more efficient DESX construction.

	Introduction
	Previous Work
	How to Save Steps
	How to Save Single Encryptions
	How to Save more Single Encryptions
	A Special Variant for Triple DES
	Comparison and Conclusion
	Acknowledgements

