Skip to main content

On Proof Complexity of Circumscription

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1397))

Abstract

Circumscription is a non-monotonic formalism based on the idea that objects satisfying a certain predicate expression are considered as the only objects satisfying it. Theoretical complexity results imply that circumscription is (in the worst case) computationally harder than classical logic. This somehow contradicts our intuition about common- sense reasoning: non-monotonic rules should help to speed up the reasoning process, and not to slow it down.

In this paper, we consider a first-order sequent calculus for circumscription and show that the presence of circumscription rules can tremendously simplify the search for proofs. In particular, we show that certain sequents have only long “classical” proofs, but short proofs can be obtained by using circumscription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Amati, L. C. Aiello, D. Gabbay and F. Pirri. A Proof Theoretical Approach to Default Reasoning I: Tableaux for Default Logic. Journal of Logic and Computation, 6(2):205–231, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. A. Bonatti. A Gentzen System for Non-Theorems. Technical Report CD-TR 93/52, Christian Doppler Labor für Expertensysteme, Technische Universität Wien, Paniglgasse 16, A-1040 Wien, 1993.

    Google Scholar 

  3. P. A. Bonatti. Sequent Calculi for Default and Autoepistemic Logics. Proceedings TABLEAUX’96, Springer LNAI 1071, pp. 127–142, 1996.

    Google Scholar 

  4. P. A. Bonatti and N. Olivetti. A Sequent Calculus for Skeptical Default Logic. Proceedings TABLEAUX’97, Springer LNAI 1227, pp. 107–121, 1997.

    Google Scholar 

  5. P.A. Bonatti and N. Olivetti. A Sequent Calculus for Circumscription. Preliminary Proceedings CSL’97, BRICS Notes Series NS-97-1, pp. 95–107, 1997.

    Google Scholar 

  6. M. Cadoli, F. M. Donini, and M. Schaerf. Is Intractability of Non-Monotonic Reasoning a Real Drawback? In Proceedings of the AAAI National Conference on Artificial Intelligence, pages 946–951. MIT Press, 1994.

    Google Scholar 

  7. M. Cadoli, F. M. Donini, and M. Schaerf. On Compact Representation of Propositional Circumscription. In Proceedings STACS’ 95, Springer LNCS 900, pp. 205–216, 1995.

    Google Scholar 

  8. M. Cadoli and M. Schaerf. A Survey of Complexity Results for Non-Monotonic Logics. Journal of Logic Programming, 17:127–160, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. L. Clark. Negation as Failure. In Logic and Databases, Plenum, New York, pp. 293–322, 1978.

    Google Scholar 

  10. U. Egly and H. Tompits. Is Nonmonotonic Reasoning Always Harder? Proceedings LPNMR’97, Springer LNAI 1265, pp. 60–75, 1997.

    Google Scholar 

  11. U. Egly and H. Tompits. Non-Elementary Speed-Ups in Default Reasoning. Proceedings ECSQARU-FAPR’97, Springer LNAI 1244, pp. 237–251, 1997.

    Google Scholar 

  12. T. Eiter and G. Gottlob. Propositional Circumscription and Extended Closed World Reasoning are II P2 -complete. Journal of Theoretical Computer Science, 114(2):231–245, 1993. Addendum: vol. 118, p. 315, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  13. V. Goranko. Refutation Systems in Modal Logic. Studia Logica, 53(2):299–324, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Gottlob. Complexity Results for Nonmonotonic Logics. Journal of Logic and Computation, 2:397–425, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. A. Kautz and B. Selman. Hard Problems for Simple Default Logics. Artificial Intelligence, 49:243–379, 1990.

    Article  MathSciNet  Google Scholar 

  16. V. Lifschitz. Computing Circumscription. In Proceedings of IJCAI’85, Morgan Kaufmann, Los Altos, CA, pp. 121–127, 1985.

    Google Scholar 

  17. J. Łukasiewicz. Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic. Clarendon Press, Oxford, 1951.

    MATH  Google Scholar 

  18. W. Marek, A. Nerode and J. Remmel. A Theory of Nonmonotonic Rule Systems II. Annals of Mathematics and Artificial Intelligence, 5:229–264, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. McCarthy. Epistemological Problems of Artificial Intelligence. In Proceedings of IJCAI’77, Cambridge, MA, pp. 1038–1044, 1977.

    Google Scholar 

  20. J. McCarthy. Circumscription — A Form of Non-Monotonic Reasoning. Artificial Intelligence, 13:27–39, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  21. I. Niemelä. A Tableau Calculus for Minimal Model Reasoning. Proceedings TABLEAUX’96, Springer LNAI 1071, pp. 278–294, 1996.

    Google Scholar 

  22. I. Niemelä. Implementing Circumscription Using a Tableau Method. Proceedings ECAI’96, John Wiley & Sons Ltd., Chichester, pp. 80–84, 1996.

    Google Scholar 

  23. N. Olivetti. Tableaux and Sequent Calculus for Minimal Entailment. Journal of Automated Reasoning, 9:99–139, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  24. V. P. Orevkov. Lower Bounds for Increasing Complexity of Derivations after Cut Elimination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im V. A. Steklova AN SSSR, 88:137–161, 1979. English translation in Journal of Soviet Mathematics, 2337–2350, 1982.

    MATH  MathSciNet  Google Scholar 

  25. R. Reiter. On Closed-World Data Bases. In Logic and Databases, pp. 55–76, Plenum, New York, 1978.

    Google Scholar 

  26. J. Schlipf. Decidability and Definability with Circumscription. Annals of Pure and Applied Logic, 35:173–191, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. Varzi. Complementary Sentential Logics. Bulletin of the Section of Logic, 19:112–116, 1990.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Egly, U., Tompits, H. (1998). On Proof Complexity of Circumscription. In: de Swart, H. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 1998. Lecture Notes in Computer Science(), vol 1397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69778-0_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-69778-0_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64406-4

  • Online ISBN: 978-3-540-69778-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics