Abstract
Starting with a derivation in the refutation calculus CRIP of Pinto and Dyckhoff, we give a constructive algebraic method for determining the values of formulas of intuitionistic propositional logic in a counter-model. The values of compound formulas are computed point-wise from the values on atoms, in contrast to the non-local determination of forcing relations in a Kripke model based on classical reasoning.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dyckhoff, R. (1992) Contraction-free sequent calculi for intuitionistic logic, The Journal of Symbolic Logic, vol. 57, pp. 795–807.
Dyckhoff, R. and L. Pinto (1996) Implementation of a loop-free method for construction of counter-models for intuitionistic propositional logic, CS/96/8, Computer Science Division, St Andrews University.
Fitting, M. (1969) Intuitionistic Logic, Model Theory and Forcing, North-Holland, Amsterdam
Hudelmaier, J. (1989) Bounds for cut elimination in intuitionistic propositional logic, PhD thesis, University of Tübingen.
Hudelmaier, J. (1992) Bounds for cut elimination in intuitionistic propositional logic, Archive for Mathematical Logic, vol. 31, pp. 331–354.
Negri, S. (1997) Sequent calculus proof theory of intuitionistic apartness and order relations, Archive for Mathematical Logic, to appear.
Pinto, L. and R. Dyckhoff (1995) Loop-free construction of counter-models for intuitionistic propositional logic, in Behara et al. eds., Symposia Gaussiana, Conf. A, pp. 225–232, de Gruyter, Berlin.
von Plato, J. (1997) Positive Heyting algebras, manuscript.
Stoughton, A. (1996) Porgi: a Proof-Or-Refutation Generator for Intuitionistic propositional logic. CADE-13 Workshop on Proof Search in Type-Theoretic Languages, Rutgers University, pp. 109–116.
Troelstra, A. S. and D. van Dalen (1988) Constructivism in Mathematics, vol. 1, North-Holland, Amsterdam.
Troelstra, A. S. and H. Schwichtenberg (1996) Basic Proof Theory, Cambridge University Press.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Negri, S., von Plato, J. (1998). From Kripke Models to Algebraic Counter-Valuations. In: de Swart, H. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 1998. Lecture Notes in Computer Science(), vol 1397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69778-0_26
Download citation
DOI: https://doi.org/10.1007/3-540-69778-0_26
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64406-4
Online ISBN: 978-3-540-69778-7
eBook Packages: Springer Book Archive