Skip to main content

From Kripke Models to Algebraic Counter-Valuations

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1397))

Abstract

Starting with a derivation in the refutation calculus CRIP of Pinto and Dyckhoff, we give a constructive algebraic method for determining the values of formulas of intuitionistic propositional logic in a counter-model. The values of compound formulas are computed point-wise from the values on atoms, in contrast to the non-local determination of forcing relations in a Kripke model based on classical reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Dyckhoff, R. (1992) Contraction-free sequent calculi for intuitionistic logic, The Journal of Symbolic Logic, vol. 57, pp. 795–807.

    Article  MATH  MathSciNet  Google Scholar 

  • Dyckhoff, R. and L. Pinto (1996) Implementation of a loop-free method for construction of counter-models for intuitionistic propositional logic, CS/96/8, Computer Science Division, St Andrews University.

    Google Scholar 

  • Fitting, M. (1969) Intuitionistic Logic, Model Theory and Forcing, North-Holland, Amsterdam

    MATH  Google Scholar 

  • Hudelmaier, J. (1989) Bounds for cut elimination in intuitionistic propositional logic, PhD thesis, University of Tübingen.

    Google Scholar 

  • Hudelmaier, J. (1992) Bounds for cut elimination in intuitionistic propositional logic, Archive for Mathematical Logic, vol. 31, pp. 331–354.

    Article  MATH  MathSciNet  Google Scholar 

  • Negri, S. (1997) Sequent calculus proof theory of intuitionistic apartness and order relations, Archive for Mathematical Logic, to appear.

    Google Scholar 

  • Pinto, L. and R. Dyckhoff (1995) Loop-free construction of counter-models for intuitionistic propositional logic, in Behara et al. eds., Symposia Gaussiana, Conf. A, pp. 225–232, de Gruyter, Berlin.

    Google Scholar 

  • von Plato, J. (1997) Positive Heyting algebras, manuscript.

    Google Scholar 

  • Stoughton, A. (1996) Porgi: a Proof-Or-Refutation Generator for Intuitionistic propositional logic. CADE-13 Workshop on Proof Search in Type-Theoretic Languages, Rutgers University, pp. 109–116.

    Google Scholar 

  • Troelstra, A. S. and D. van Dalen (1988) Constructivism in Mathematics, vol. 1, North-Holland, Amsterdam.

    Google Scholar 

  • Troelstra, A. S. and H. Schwichtenberg (1996) Basic Proof Theory, Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Negri, S., von Plato, J. (1998). From Kripke Models to Algebraic Counter-Valuations. In: de Swart, H. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 1998. Lecture Notes in Computer Science(), vol 1397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69778-0_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-69778-0_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64406-4

  • Online ISBN: 978-3-540-69778-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics