Agents and the UML: A Unified Notation for Agents
and Multi-agent Systems?

Bernhard Bauer!, Federico Bergenti2, Philippe Massonet’, and James J. Odell'

' Siemens, CT IC 6

D-81730 Miinchen, Germany
Bernhard.Bauer@mchp.siemens.de

2 Universita degli Studi di Parma, Parco Area delle Scienze 181A

43100 Parma, Italy
Bergenti@CE.UniPR.IT

3 CEDITIL Av. Georges Lemaitre, 21

B-6041 Charleroi, Belgium
Philippe.Massonet@cediti.be

4 James Odell Associates, 3646 W. Huron River Drive

Ann Arbor, MI 48103-9489 USA
jodell@compuserve.com

Over the last few years, agent-oriented software engineering has promoted the adop-
tion of agents as a first-class paradigm for software engineering in research and in-
dustrial development. Agents have been used in research development for more than
twenty years, while they still do not find complete acceptance in industrial settings.
We believe that basically three characteristics of industrial development prevent the
adoption of agents: (i) The scope of industrial projects is much larger than typical
research efforts, (ii) The skills of developers are focused on established technologies,
(iii) The use of advanced technologies is not part of the success criteria of a project. In
order to establish a solid ground for giving agent technologies these characteristics, we
recognize that accepted methods for industrial development depend on standard repre-
sentations of artifacts supporting all phases of the software lifecycle. Standard repre-
sentations are needed by tool developers to provide commercial quality tools that
mainstream software engineering departments need for industrial agent systems de-
velopment.

Nowadays, many agent-oriented methodologies and tools are available, and the
agent community is facing the problem of identifying a common vocabulary to support
them. The idea of using UML as a common ground for building such a vocabulary has
led to a remarkable work that is summarized in papers presented at various workshops
and conferences. Just to mention papers that appeared in 2001, we find a great interest
in this topic in AOSE-2001 [1, 2, 3,4, 5, 6,7, 8] and OAS-2001 [13, 14] workshops
and in Autonomous Agents conference [9, 10, 11, 12]. Two practical reasons for using
UML as a common ground are that many agent systems can be implemented in terms
of distributed object-oriented technologies, and many mainstream software engineer-
ing departments already know and use UML.



149

The panel discussion at AOSE-2001 workshop focused on the idea of using the
UML to model agents and multi-agent systems and it showed some agreement of the
audience on this topic. The critiques to this idea were only technical and they con-
cerned basically the first attempts to use the UML to model agent concepts, i.e.,
AUML interaction-protocol diagrams. The question that the audience raised periodi-
cally was: “Do we really need to extend the UML or shall we go with what we have
now?” One of the original proposers suggested that the current UML language should
provide a base from which we can reuse notations found useful to model agents; in
this way we could minimize inventing yet-another notation, while extending and add-
ing notation where appropriate. Two of the original proposers of such diagrams agreed
that the extension of the UML was not the main point of their proposal. They decided
to extend the notation only to model concepts, such as interaction protocols and roles
within interaction protocols, that were not expressible with the current UML at the
time of writing. Moreover, the UML community accepted some of their ideas and
integrated them in next the release of the notation.

Some members of the audience expressed the fear that using UML as a basis for an
agent notation would not emphasize the fact that the agent paradigm is radically dif-
ferent from the object-oriented paradigm. They referred to the transition from the
structured to the object-oriented paradigm in the last decade and the difficulties that
programmers had when making the transition from C to C++ (basically writing C++
programs in the structured programming style as if they were C programs).

Panelists agree that the discussion showed the interest of the community in finding
a common vocabulary for agent technologies and, besides some technical issues, they
find the idea of defining the AUML a good starting point to achieve this purpose. For
the current status of the AUML please refer to the official website:
http://www.auml.org.

Papers in Proceedings of AOSE-2001

1. Bauer, B.: “UML Class Diagrams: Revisited in the Context of Agent-Based Systems,”
pp-1-8.

2. Parunak, V., Odell, J.: “Representing Social Structures in UML,” pp. 17-31.

3. Gervais, M.P., Muscutariu, F.: “Towards an ADL for Designing Agent-Based Systems,”
pp-49-56.

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: “Modeling early
requirements in Tropos: A Transformation-based Approach,” pp. 67-75.

5. Sparkman, C.H., DeLoach, S.A., Athie, L.: “Self Automated Derivation of Complex Agent
Architectures from Analysis Specifications,” pp.77-84.

6. Flores, R.A., Kremer, R.C.: “Bringing Coherence to Agent Conversations,” pp. 85-92.

7. Koning, J.L., Huget, M.P., Wei, J., Wang, X.: “Extended Modeling Languages for Interac-
tion Protocol Design,” pp. 93-100.

8. Caire G., Leal, F., Chainho, P., Evans, R., Garijo, F., Gomez, J., Pavon, J., Kearney, P.,
Stark, J., Massonet, P.: “Agent Oriented Analysis using MESSAGE/UML,” pp. 101-108.



150

Papers in Proceedings of Autonomous Agents 2001

9. Karacapilidis, N., Pavlos, M.: “Intelligent Agents for an Artificial Market System,” pp.
592-599.

10. Bergenti, F., Poggi, A.: “A Development Toolkit to Realize Autonomous and Inter-
operable Agents,” pp. 632-639.

11. Depke, R., Heckel, R., Kiister, J.M.: “Improving the Agent-Oriented Modeling Process by
Roles,” pp. 640-647.

12. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: “A Knowledge
Level Software Engineering Methodology for Agent Oriented Programming,” pp. 648-655.

Papers in Proceedings of OAS-2001

13. Cranefield, S., Hausteiny, S., Purvis, M.: “UML-Based Ontology Modelling for Software
Agents,” pp. 21-28.
14. Cranefield, S., Purvis, M.: “Generating Ontology-Specific Content Languages,” pp. 29-35.



