

Example-Driven Graphics Recognition

Liu Wenyin

Dept of Computer Science, City University of Hong Kong, Hong Kong SAR, PR China
csliuwy@cityu.edu.hk

Abstract. An example-driven graphics recognition scheme is presented, which
is an extension of the generic graphics recognition algorithm we presented years
ago. The key idea is that, interactively, the user can specify one or more
examples of one type of graphic objects in an engineering drawing image, an
the system then learn the constraint rules among the components in this type of
graphic objects and recognize similar objects in the same drawing or similar
drawings by matching the constraint rules. Preliminary experiments have shown
that this is a promising way for interactive graphics recognition.

Keywords:

1 Introduction

As a pattern recognition problem, graphics recognition requires that each graphic
pattern be known, analyzed, defined, and represented prior to the recognition
(matching with those patterns in the image) process. This is especially true for those
approaches (e.g., Neural Network based approaches [1]) that require large sets of
pattern samples for pre-training. Similarly, the syntaxes and structures of the patterns
should also be pre-defined before recognition in syntactic and structural approaches
(e.g., [2]) and the knowledge about the patterns should also be pre-acquired before
recognition in knowledge-based approaches (e.g., [2] and [8]). For example, if the
task is to recognize lines from images, the attributes or features of the line patterns
should be analyzed such that appropriate representations and algorithm can be
designed and implemented. Through pattern analysis we know that line patterns in the
image space correspond to peaks in the Hough transformed space. Therefore, these
peaks are pre-defined features for detecting lines in the Hough Transform based
approaches [4]. Usually, the features, syntaxes, and other knowledge about the
patterns, e.g., the graphic geometry, are hard-coded in the recognition algorithms.
Hence, currently, each graphics recognition algorithm only deals with a limited set of
specific, known graphic patterns, e.g., dimension-sets [2], shafts [8]. Once implement-
ed and incorporated in a graphics recognition system, these features, syntaxes, and
knowledge cannot be changed. The system can only be used for these pre-defined
patterns and cannot be applied to other previously unknown patterns or new patterns.
In order to recognize new patterns, the same analysis-design process should be
repeated. Hence, these approaches are not flexible to changeable environments.

graphics recognition, rule-based approach, case-based reasoning,
 SSPR.

T. Caelli et al. (Eds.): SSPR&SPR 2002, LNCS 2396, pp. 168-176, 2002.
c Springer-Verlag Berlin Heidelberg 2002

It is fine to hard-code for those very common graphic primitives, e.g., lines, arcs,
characters in the recognition algorithms. However, there are many different classes of
graphic symbols/patterns or higher level graphic objects in many different domains of
drawings. Even within a single domain, e.g., mechanical drawings or architectural
drawings, the number of symbols or commonly re-usable component patterns can be
very large. Hence, it is non-realistic to hard-code all of them in the recognition
algorithms. A generic method that can automatic learn new or updated patterns for
run-time or just-in-time recognition is strongly desired.

In this paper, we propose a new scheme of graphics recognition, which is example-
driven. That is, the user provides to the system with a selected set of representative
examples for the graphic pattern to be recognized and the system learns the knowledge
(attributes/constraints of the components, etc.) about the pattern from these examples
and recognizes all graphic patterns similar (in terms of those attributes and
constraints) to these examples. In this way, the system does not need to know any pre-
defined patterns before the system is built. The knowledge of patterns can be learnt at
run-time. The underlying support for this example-driven scheme is the generic
graphic recognition algorithm (GGRA) [6, 7] implemented using a rule-based
approach. Due to the vector-based nature of GGRA, pre-segmentation of graphic
patterns is not required. In this paper, we first briefly explain GGRA and then present
the rule-based framework for graphics recognition. Preliminary experiments and
concluding remarks are also presented.

2 The Generic Graphics Recognition Algorithm

The Generic Graphics Recognition Algorithm (GGRA) [6, 7] was proposed and
constructed based on the observation that all graphic patterns consist of multiple
components satisfying (subject to) a set of constraints. For instance, a rectangle
comprises a closed sequence of four connected straight lines with four right angles at
the four connection points. Even a solid line may consist of several connected and
collinear vectorized line fragments.

Most existing graphics recognition algorithms cluster all the potential constituent
components at once, while the graphics attributes are determined later. This blind
search procedure usually introduces inaccuracies in the grouping of the components,
which ultimately account for inaccurate graphics recognition. Moreover, each class of
graphic objects requires a particular detection algorithm. In spite of many graphics
recognition algorithms reported, no research report has yet proposed to detect all
classes of graphics by a generic, unifying algorithm.

The Generic Graphics Recognition Algorithm (GGRA) [6, 7] we previously
proposed is a more flexible and adaptive scheme that constantly checks the graphic
object’s syntax rules and updates the object’s parameters while grouping its
components. This generic graphics recognition methodology takes vectors as input.
These vectors can be produced by any vectorization algorithm, in particular our sparse
pixel vectorization algorithm (SPV) [5]. As shown in Fig. 1, which is the C++ code
illustration of the framework, GGRA (in runWith(…)) consists of two main phases

169Example-Driven Graphics Recognition

based on the hypothesis-and-test paradigm. The first step is the hypothesis generation,
in which the existence of a graphic object of the class being detected is assumed by
finding its first key component from the graphics database (by calling prm = gobj-
>find FirstComponentFrom(gdb)). The second step is the hypothesis test, in which
the presence of such graphic object is proved by successfully constructing it from its
first key component and serially extending it to its other components. In the second
step, an empty graphic object is first filled with the first key component found in the
first step (by calling gobj->fillWith(prm)). The graphic object is further extended as
far as possible in all possible directions (d<=gobj->numOfExtensionDirections()) in
the extension process—a stepwise recovery of its other components (extend(d, gdb)).
After the current graphic object is extended to all extension directions, a final
credibility test (gobj->isCredible()) prevents the inclusion of false positives due to
accumulative error. If the extended graphic object passes the test, it is recognized
successfully and added to the graphics database (gdb), otherwise all found
components are rejected as being parts of the anticipated object which should be
deleted. Regardless of whether the test is successful or not, the recognition process
proceeds to find the next key component, which is used to start a new hypothesis test.

template <class AGraphicClass>
class DetectorOf
{

DetectorOf() {}
 void runWith(GraphicDataBase& gdb) {

 while (1) {
 AGraphicClass* gobj = new AGraphicClass();

 Primitive* prm = gobj->findFirstComponentFrom(gdb);
 if (prm == null) return;

 if (!gobj->fillWith(prm)) continue;
 for (int d=0;d<=gobj->numOfExtensionDirections(); d++)
 while (gobj->extend(d, gdb));
 if (!gobj->isCredible()) delete gobj;
 else gobj->addTo(gdb)
 }
}

 boolean extend(int direction, GraphicDataBase& gdb) {
 Area area = extensionArea(direction);
 PrimitiveArray& candidates = gdb.search(area);
 for (int i=0; i < candidates.getSize(); i++) {
 if (!extensible(candidates[i])) continue;

 updateWith(candidates[i]);
 break;

 }
 if (i < candidates.getSize()) return true;
 return false;
 }
};

Fig. 1. Outline of the C++ implementation of GGRA

In the extension procedure (extend(…)), an extension area is first defined at the
current extension direction according to the object’s current state, e.g., the most
recently found component (by calling area = extensionArea(direction)). All

170 Liu Wenyin

candidates of possible components that are found in this area and pass the candidacy
test are then inserted into the candidate list, sorted by their nearest distance to the
current graphic object being extended (by calling candidates = gdb.search(area)). The
nearest candidate undergoes the extendibility test (extensible(candidates[i])). If it
passes the test, the current graphic object is extended to include it (by calling
updateWith(candidates[i])). Otherwise, the next nearest candidate is taken for the
extendibility test, until some candidate passes the test. If no candidate passes the test,
the extension process stops. If the graphic object is successfully extended to a new
component, the extension process is iterated with the object’s updated state.

Since in the first phase we find the first key component of the object to be
recognized, making the correct hypothesis is crucial, and should be properly
constrained. If it is over-constrained, only few objects will be found, while under-
constraining it would lead to too many false alarms. If no key component can be
found, no more objects of the type being sought can be detected and the recognition
process (runWith(…)) stops.

The generic object recognition algorithm can be instantiated for the recognition
process of a variety of objects. Especially, GGRA has been successfully applied to
detection of various types of lines [9], text, arrowheads, leaders, and dimension-sets,
hatched areas. However, in these applications, the rules (defining the graphic classes)
are hard-coded in the overridden member functions of their classes. In this paper,
GGRA is further generalized and applied to detection of user-defined types of graphic
objects by implementing the abstract functions (in bold fonts in Fig. 1) in GGRA
using the rule-based approach.

3 The Rule-Based Graphics Recognition Framework

Due to GGRA’s generalized and stepwise nature, it is a good candidate to serve as the
basis for the recognition framework for the graphic classes that are previously
unknown but specified or defined at run-time. In this paper, we extend GGRA to such
recognition framework by implementing the abstract functions (in bold fonts in Fig. 1)
in GGRA using the rule-based approach. That is, the rule-based algorithms (and the
code) in these functions are the same for all graphics classes. Each graphics class is
specified using a set of rules (attributes and constraints), which are stored in the
knowledge database. In the recognition process for a particular class, its rules are
taken for testing and execution in the same algorithms. The knowledge base is
managed separately from the main algorithms, which are fixed for all graphic classes.
Hence, to make the work for a new graphics class, the only thing we need to do is to
add the rules, which specify the components and their attributes/constraints, to the
knowledge base. The rules are also updated when new positive/negative examples are
provided for existing graphic classes.

In this section, we present how the rules for a particular graphic class are
represented, learnt, and used in the recognition process.

171Example-Driven Graphics Recognition

Knowledge Representation Scheme for Graphics Classes

In order to specify a graphics class, we design the representation scheme for a
graphics class as follows. Each object of such graphic class should have the following
attributes or features.
1. The ID for this class, which can be specified by the user or an automatic program.
2. The components (in sequence) of the class, which can be any previously known

graphic classes. Currently, we use lines, arrowheads, and textboxes as primitive
types, whose attributes are known. Once new graphics classes, which can either be
manually specified by the user or be automatically learnt from examples, are
added, they can also be used as the types of components of future graphics classes.

3. The attributes of each individual component, which can be used to filter out those
graphic objects that cannot be candidates for the component. The graphic type for
this component is the most important attribute for the component. The attributes
for each type can be different. For examples, the attributes for a line segment can
include its shape (which can be straight, circular, free formed, etc.) and style
(which can be one of the pre-defined styles: continuous, dashed, dash-dotted, dash-
dot-dotted, etc.), line width, length, angle, etc. An attribute can be specified with
tolerances. For example, a line width can be 5±1 pixels and an angle can be 45±5º.
An attribute, e.g., the graphics type, can also be fixed. Most often, if a textbox is
required, a line is usually not allowed. Sometimes, line shape and style are also not
flexible attributes for a component.

4. The constraints between each individual component and the entire object or other
components that are in previous position in the component sequence. For example,
the relative location (or angle) of the component in the entire object is a constraint
between the component and the entire object. A constraint between two
components can be intersection/connection/perpendicularity/parallelism (width a
tolerated distance) between two straight lines, or concentricity/tangency between
two arcs, or positional (above/under, left/right, or inside/outside) between two
rectangles, and so on. Tolerances are also necessary due to many reasons including
drawing digitization and vectorization.

The types of attributes and constraints can also be expanded to include new ones
while a few primitive types of attributes and constraints are defined initially. For
examples, the connection of two lines (of any shape and any style) is defined as that
the minimum distance of an endpoint of one line to an endpoint of the other line is less
than a tolerance (e.g., half of the line width).

Knowledge Acquisition for a Particular Graphics Class from Examples

Knowledge acquisition is the process in which the rules (mainly, the attributes and
constraints) to represent particular graphics classes are obtained. Admittedly, a user
can write all the rules manually. However, to enable example-driven graphic
recognition, automatic acquisition of the rules is indispensable. Hence, we implement

172 Liu Wenyin

an automatic learning process for a particular graphics class from the examples
provided by the user.

In the automatic learning process, we need to determine the ID of the class, its
components and sequence, especially, the first key components, which is critical in
starting the recognition process (as shown in Fig. 1). More importantly, we need to
determine the attributes of individual components and constraints among components.
While the ID can be obtained quite easily (as we discussed in the last sub-section),
determination of other things, however, is not-trivial.

First of all, the first key component and the sequence of the remaining components
should be determined. Although there are multiple choices for the sequence, a good
sequence can greatly reduce the complexity of the constraints and speedup the
searching process for component candidates. We define the following heuristic rules
for determination of the component sequence.

1. The components within an example are first sorted according to the priorities of
their graphic types. The priority of a particular graphic type is determined as
inversely proportional to the occurrence frequency of this type of objects in all
graphic drawings, which can be statistically obtained. The lower the frequency, the
higher the priority. The reason is that the graphic objects of those common types
can be quickly filtered out during the candidacy test to save much time in later
constraints checking, in which this sequence can filter out those non-promising
combination of components more quickly than other possible sequences. Hence,
the priority list can be sorted in the decreasing order of the occurrence frequencies
of the graphic types. For example, solid lines are the most dominant graphic type
in engineering drawing and hence this type is of the lowest priority.

2. If two components are of the same type, other attributes, e.g., length, size, can be
used to sort their priorities.

3. When the first key component is determined, the sequence of the remaining
components can be done similarly according to the type priorities. Or alternatively,
the nearest principle can be used to find the next components. If multiple
components are the nearest, positional sequences, e.g., from left to right, from top-
down, can be used.

4. If multiple examples have been provided, the alignment (or correspondence)
between the components of each example should be done. The most conformable
sequence is chosen as the final sequence of components for this graphic class.

5. Optionally, the user’s interaction can also be used as a method to specify the
sequence. For example, we can ask experienced users to pick the key components
in his examples first when the examples are provided.

After the sequence is determined, the attributes of each component is also
determined. If a single example is provided, the values of the attributes can be directly
calculated from the example. For example, the relative position/angle, length, angel,
etc., can be calculated for line types. If permitted, a tolerance can also be added for
each attributes. If multiple examples are provided, the values of the attribute for the
same component all examples are used to determined the range of values that the
attribute can take.

Then the constraints between the current components and each of the previous
components in the sequence are determined. For each pair of component, each

173Example-Driven Graphics Recognition

possible constraint in a candidate constraint list (as we discussed in the previous sub-
section) is tested. If the constraint passed the test, then this constraint is valid for this
pair of components. Otherwise, the final constraint list for this graphic class does not
include this constraint. If only a single example is provided, the tolerance of the
constraint can be set strictly. If multiple examples are provided, the tolerance should
be set to include all possibilities in the examples. If one among the many examples
given for this graphic pattern violates the constraint, then this constraint is not a
mandatory for this pattern and should not be included in the final constraint list. Even
more, if more examples, especially for those negative examples (e.g., false alarms
removed by the user), are provided later, the tolerance should be updated or even the
entire constraints should become invalid.

Matching for Recognition of a Particular Graphics Class

Once the rules for a particular graphic class are known, its recognition process mainly
consists of searching the current graphics database for its components with the rules
using GGRA (as shown in Fig. 1). In this sub-section, we only discuss the main
functions that should be implemented. Implementations of others are intuitive. We
start the process by finding its first key component, whose attributes should conform
to those of the first one in the component sequence for this graphics class. Starting
with the first key component found by the findFirstComponentFrom(…) function, in
which all attribute requirements for the first component are met, we find the other
components for this graphic object one by one using the extend(direction, …)
function. The numOfExtensionDirections() function returns the number of
components for this graphics class. The “direction” parameter in extend(direction, …)
function specifies which component the current extension procedure is searching for.
The search(…) function returns those candidates, which pass all attribute
requirements for the current component. Each candidate undergoes further tests in
extensible(candidates[i]) function, in which all constraints between this components
and others are checked. The first candidate that passes the tests is used as the current
component. If such a component can be found the graphic object is successfully
extended to this component and the extension to the next component in the sequence
will begin until all components are successfully found and the entire graphic object is
successfully recognized. Otherwise, it means failure of recognizing the graphic object.

4 Experiments

We have implemented the rule-based graphics recognition algorithm for simple
graphic patterns that consists of only various types of lines and use it to implement our
strategy of example-driven graphics recognition. An example of the graphic pattern
that we want to recognize is specified by clicking all of its components. For example,
as shown in Fig. 2, the user can click the solid circles and the concentric dashed
circles as the example of the pattern we want to recognize. The system automatically

174 Liu Wenyin

determines the dashed circle as the first key component and concentricity is the main
constraint. The system then automatically finds other similar graphic patterns which
contain the same kinds of components and are constrained similarly in the drawing.
Including the example, four objects of this class have been recognized due to that we
used a larger tolerance to the central angle of the arcs in the implementation. If we had
selected the top-left or bottom-right pattern as the example, only three objects could
have been recognized. This is due to that each such example contains a partial arc that
cannot be successfully matched during recognition. Anyway, the experiment has
proved that the current implementation has already been able to do example-driven
graphics recognition.

Fig. 2. Results of example-driven graphics recognition

Current, only single example can be used in our experiments. Recognition based on

multiple examples, especially negative examples (from user’s manual correction of
false alarms), will be soon implemented. We will also test the algorithm on more
complex graphic patterns, e.g., including arrowheads and textboxes in the future.

First key component

Pattern example
specified by the
user

175Example-Driven Graphics Recognition

5 Summary and Future Work

We have presented a rule-based graphics recognition framework, which is based on
the generic graphics recognition algorithm [6]. We have also applied it to build the
example-driven graphics recognition scheme and obtained preliminary but promising
results.

The scheme features a manual user interface for providing examples for particular
graphic patterns, a rule-based representation of graphic patterns, and an automatic
learning process for the constraint rules. This scheme provides a flexible approach,
which are suitable for recognition of those graphic patterns that are unknown
previously before the recognition system has been built. Such interactive graphic
recognition scheme is especially useful in the current stage when automatic
recognition cannot always produce reliable results. This scheme can also be used as
efficient way for automatic knowledge acquisition for graphic patterns.

Although we currently only use single examples for learning graphic patterns, we
believe that the scheme can also fit the cases of multiple examples from both positive
and negative perspectives. Especially, the user’s feedback, e.g., manual correction to
those misrecognitions can be good resource to correctly learn the graphic patterns.

6 References

1. Cheng, T., Khan, J., Liu, H., Yun, D.Y.Y.: A symbol recognition system. In: Proc.
ICDAR93 (1993).

2. den Hartog J.E., ten Kate T.K., and Gerbrands J.J.: Knowledge-Based Interpretation of
Utility Maps. Computer Vision and Image Understanding 63(1) (1996) 105-117.

3. Dori D.: A syntactic/geometric approach to recognition of dimensions in engineering
machine drawings. Computer Vision, Graphics, and Image Processing 47(3) (1989)
271-291

4. Dori D.: Orthogonal Zig-Zag: an Algorithm for Vectorizing Engineering Drawings
Compared with Hough Transform. Advances in Engineering Software 28(1) (1997) 11-
24

5. Dori D. and Liu W.: Sparse Pixel Vectorization: An Algorithm and Its Performance
Evaluation. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(3) (1999)
202-215.

6. Liu W. and Dori D.: Genericity in Graphics Recognition Algorithms. In: Graphics
Recognition: Algorithms and Systems, eds. K. Tombre and A. Chhabra, Lecture Notes
in Computer Science, Vol. 1389, pp. 9-21, Springer (1998).

7. Liu W. and Dori D.: A Generic Integrated Line Detection Algorithm and Its Object-
Process Specification. Computer Vision and Image Understanding 70(3) (1998) 420-
437

8. Vaxiviere P. and Tombre K.: Celestin: CAD Conversion of Mechanical Drawings.
IEEE Computer Magazine 25(7) (1992) 46-54

176 Liu Wenyin

	Introduction
	The Generic Graphics Recognition Algorithm
	The Rule-Based Graphics Recognition Framework
	Knowledge Representation Scheme for Graphics Classes
	Knowledge Acquisition for a Particular Graphics Class from Examples
	Matching for Recognition of a Particular Graphics Class

	Experiments
	Summary and Future Work
	References

