Abstract
A small change in illumination produces large changes in appearance of face even when viewed in fixed pose. It makes face recognition more difficult to handle. To deal with this problem, we introduce a simple and practical method based on the multiple regression model, we call it ICR (Illumination Compensation based on the Multiple Regression Model). We can get the illumination-normalized image of an input image by ICR. To show the improvement of recognition performance with ICR, we applied ICR as a preprocessing step. We achieved better result with the method in preprocessing point of view when we used a popular technique, PCA, on a public database and our database.
Chapter PDF
Similar content being viewed by others
References
Michael J. Tarr, Daniel Kersten, Heinrich H. Bulthoff,: Why the visual recognition system might encode the effects of illumination, Pattern Recognition (1998)
Yael Adini, Yael Moses, and Shimon Ullman,: Face Reconition: The problem of Compensating for Changes in Illumination Direction, IEEE Trans. on PAMI Vol. 19, No. 7(1997)721–732
P. J. Phillips, H. Moon, P. Rauss, and S. A. Rizvi.: The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Conference on CVPR, Puerto Rico (1997) 137–143
S. Rizvi, P. Phillips, and H. Moon.: The FERET verication testing protocol for face recognition algorithms. IEEE Conference on Automatic Face-and Gesture-Recognition (1998) 48–53
R. Chellappa and W. Zhao,: Face Recognition: A Literature Survey. ACM Journal of Computing Surveys (2000)
A. Yuille, D. Snow, R. Epstein, P. Belhumeur,: Determining Generative Models of Objects Under Varying Illumination: Shape and Albedo from Multiple Images Using SVD and Integrability, International Journal of Computer Vision, 35 (3X1999) 203–222
P. N. Belhumeur and D. J. Kriegman.: What is the set of images of an object under all possible lighting conditions?, IEEE Conference on CVPR (1996)
Athinodoros S. Georghiades, David J. Kriegman, Peter N. Belhumeur,: Illumination Cones for Recognition Under Variable Lighting: Faces, IEEE Conference on CVPR (1998) 52–58
M. Turk and A. Pentland,: Eigenfaces for recognition. Journal of Cognitive Neuroscience, Vol 3 (1991)
V. Belhumeur, J. Hespanha, and D. Kriegman.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. on PAMI (1997) 711–720
Bischof, H.; Wildenauer, H.; Leonardis, A.: Illumination insensitive eigenspaces, IEEE Conference on Computer Vision, Vol. 1 (2001) 233–238
Wen Yi Zhao; Chellappa, R.: Illumination-Insensitive Face Recognition Using Symmetric Shape-from-Shading, IEEE Conference on CVPR, Vol. 1, (2000) 286–293
S. M. Ross,: Introduction to Probability and Statistics for Engineers and Scientists, Wiley, New York (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ko, J., Kim, E., Byun, H. (2002). Illumination Normalized Face Image for Face Recognition. In: Caelli, T., Amin, A., Duin, R.P.W., de Ridder, D., Kamel, M. (eds) Structural, Syntactic, and Statistical Pattern Recognition. SSPR /SPR 2002. Lecture Notes in Computer Science, vol 2396. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-70659-3_68
Download citation
DOI: https://doi.org/10.1007/3-540-70659-3_68
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44011-6
Online ISBN: 978-3-540-70659-5
eBook Packages: Springer Book Archive