Skip to main content

A logical framework for graph theoretical decision tree learning

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 1997)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1297))

Included in the following conference series:

Abstract

We present a logical approach to graph theoretical learning that is based on using alphabetic substitutions for modelling graph morphisms. A classified graph is represented by a definite clause that possesses variables of the sort node for representing nodes and atoms for representing the edges. In contrast to the standard logical semantics, different node variables are assumed to denote different objects. The use of an alphabetical subsumption relation (α-subsumption) implies that the least generalization of clauses (α-generalization) has different properties than Plotkin's least generalization (gg). We present a method for constructing optimal α-generalizations from Plotkin's least generalization. The developed framework is used in the relational decision tree algorithm TRITOP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Buntine. Generalized subsumtion. and its applications to induction and redundancy. Artificial Intelligence, 36:149–176, 1988.

    Google Scholar 

  2. R. Carraghan and M. P Pradalos. An exact algorithm for the maximum clique problem. Operations Research Letter, 9:375–382, 1990.

    Google Scholar 

  3. L. Dehaspe, W. van Laer, and L. De Raedt. Applications of a logical discovery engine. In Proc. 4th Int. Workshop on ILP, GMD-Studien Nr. 237, 1994.

    Google Scholar 

  4. Peter Geibel and Fritz Wysotzki. Learning relational concepts with decision trees. In Lorenza Saitta, editor, Machine Learning: Proceedings of the Thirteenth International Conference. Morgan Kaufmann Publishers, San Fransisco, CA, 1996.

    Google Scholar 

  5. N. Helft. Inductive generalization: A logical framework. In Proceedings of the Second Working Session on Learning, pages 149–157, 1987.

    Google Scholar 

  6. B. Jung. On inverting generality relations. In S. Muggleton, editor, Proc. of the 3rd Int. Workshop on ILP, pages 87–102. J. Stefan Institute, 1993.

    Google Scholar 

  7. J. Kietz. Induktive Analyse relationaler Daten. PhD thesis, Technische Universität Berlin, 1996.

    Google Scholar 

  8. S. Kramer. Structural regression trees. Technical Report TR-95-35, Oesterreichisches Forschungsinstitut fuer Artificial Intelligence, 1995.

    Google Scholar 

  9. J. W. LLoyd. Foundations of Logic Programming. Springer-Verlag, 1987.

    Google Scholar 

  10. G. D. Plotkin. A note on inductive generalization. In Machine Intelligence, pages 153–164. Edinburgh University Press, 1969.

    Google Scholar 

  11. J. R. Quinlan. Learning Logical Definitions from Relations. Machine Learning, 5:239–266, 1990.

    Google Scholar 

  12. J.R. Quinlan. Induction of Decision Trees. Machine Learning, 1(1):82–106, 1986.

    Google Scholar 

  13. C. Rouveirol. Semantic model for induction of first order theories. In Proceedings of the 12th IJCAI, pages 685–691. Morgan Kaufmann, 1991.

    Google Scholar 

  14. T. Scheffer, H. Herbrich, and F. Wysotzki. Efficient theta-subsumtion based on graph algorithms. In Proceedings of the International Workshop on ILP, 1996.

    Google Scholar 

  15. A. Srinivasan and S. H. Muggleton. Comparing the use of background knowledge by two inductive logic programming systems. In Proceedings ILP 1995, 1995.

    Google Scholar 

  16. S. Unger and F. Wysotzki. Lernfdhige Klassifizierungssysteme. Akademie-Verlag, Berlin, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nada Lavrač Sašo Džeroski

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geibel, P., Wysotzki, F. (1997). A logical framework for graph theoretical decision tree learning. In: Lavrač, N., Džeroski, S. (eds) Inductive Logic Programming. ILP 1997. Lecture Notes in Computer Science, vol 1297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3540635149_46

Download citation

  • DOI: https://doi.org/10.1007/3540635149_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63514-7

  • Online ISBN: 978-3-540-69587-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics