Skip to main content

Visual Analysis of Sequences Using Fractal Geometry

  • Chapter
  • First Online:
Data Mining and Knowledge Discovery Handbook

Summary

Sequence analysis is a challenging task in the data mining arena, relevant for many practical domains. We propose a novel method for visual analysis and classification of sequences based on Iterated Function System (IFS). IFS is utilized to produce a fractal representation of sequences. The proposed method offers an effective tool for visual detection of sequence patterns influencing a target attribute, and requires no understanding of mathematical or statistical algorithms. Moreover, it enables to detect sequence patterns of any length, without predefining the sequence pattern length. It also enables to visually distinguish between different sequence patterns in cases of reoccurrence of categories within a sequence. Our proposed method provides another significant added value by enabling the visual detection of rare and missing sequences per target class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arbel, R. and Rokach, L., Classifier evaluation under limited resources, Pattern Recognition Letters, 27(14): 1619–1631, 2006, Elsevier.

    Article  Google Scholar 

  • Barnsley M., Fractals Everywhere, Academic Press, Boston, 1988

    MATH  Google Scholar 

  • Barnsley, M., Hurd L. P., Fractal Image Compression, A. K. Peters, Boston, 1993

    MATH  Google Scholar 

  • Cohen S., Rokach L., Maimon O., Decision Tree Instance Space Decomposition with Grouped Gain-Ratio, Information Science, Volume 177, Issue 17, pp. 3592-3612, 2007.

    Article  Google Scholar 

  • Da Cunha C., Agard B., and Kusiak A., Data mining for improvement of product quality, International Journal of Production Research, 44(18-19), pp. 4027-4041, 2006

    Article  MATH  Google Scholar 

  • Falconer K., Techniques in Fractal geometry, John Wiley & Sons, 1997

    Google Scholar 

  • Jeffrey H. J., Chaos game representation of genetic sequences, Nucleic Acids Res., vol. 18, pp. 2163 – 2170, 1990

    Article  Google Scholar 

  • Keim D. A., Information Visualization and Visual Data mining, IEEE Transactions of Visualization and Computer Graphics, Vol. 7, No. 1, pp. 100-107, 2002

    MathSciNet  Google Scholar 

  • Maimon O., and Rokach, L. Data Mining by Attribute Decomposition with semiconductors manufacturing case study, in Data Mining for Design and Manufacturing: Methods and Applications, D. Braha (ed.), Kluwer Academic Publishers, pp. 311–336, 2001.

    Google Scholar 

  • Moskovitch R, Elovici Y, Rokach L, Detection of unknown computer worms based on behavioral classification of the host, Computational Statistics and Data Analysis, 52(9):4544–4566, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  • Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993

    Google Scholar 

  • Rokach L., Mining manufacturing data using genetic algorithm-based feature set decomposition, Int. J. Intelligent Systems Technologies and Applications, 4(1):57-78, 2008.

    Article  Google Scholar 

  • Rokach L., Genetic algorithm-based feature set partitioning for classification problems, Pattern Recognition, 41(5):1676–1700, 2008.

    Article  MATH  Google Scholar 

  • Rokach, L., Decomposition methodology for classification tasks: a meta decomposer framework, Pattern Analysis and Applications, 9(2006):257–271.

    Article  MathSciNet  Google Scholar 

  • Rokach, L. and Maimon, O., Theory and applications of attribute decomposition, IEEE International Conference on Data Mining, IEEE Computer Society Press, pp. 473–480, 2001.

    Google Scholar 

  • Rokach L. and Maimon O., Feature Set Decomposition for Decision Trees, Journal of Intelligent Data Analysis, Volume 9, Number 2, 2005b, pp 131–158.

    Google Scholar 

  • Rokach L., and Maimon O., Data mining for improving the quality of manufacturing: A feature set decomposition approach. Journal of Intelligent Manufacturing, 17(23.3), pp. 285-299, 2006

    Article  Google Scholar 

  • Rokach, L. and Maimon, O. and Arbel, R., Selective voting-getting more for less in sensor fusion, International Journal of Pattern Recognition and Artificial Intelligence 20 (3) (2006), pp. 329–350.

    Article  Google Scholar 

  • Rokach, L. and Maimon, O. and Averbuch, M., Information Retrieval System for Medical Narrative Reports, Lecture Notes in Artificial intelligence 3055, page 217-228 Springer-Verlag, 2004.

    Google Scholar 

  • Rokach L., Maimon O. and Lavi I., Space Decomposition In Data Mining: A Clustering Approach, Proceedings of the 14th International Symposium On Methodologies For Intelligent Systems, Maebashi, Japan, Lecture Notes in Computer Science, Springer-Verlag, 2003, pp. 24–31.

    Google Scholar 

  • Rokach L., Romano R. and Maimon O., Mining manufacturing databases to discover the effect of operation sequence on the product quality, Journal of Intelligent Manufacturing, 2008

    Google Scholar 

  • Ruschin-Rimini N., Maimon O. and Romano R., Visual Analysis of Quality-related Manufacturing Data Using Fractal Geometry, working paper submitted for publication, 2009.

    Google Scholar 

  • Weiss C. H., Visual Analysis of Categorical Time Series, Statistical Methodology 5, pp. 56- 71, 2008

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rimini, N.R., Maimon, O. (2009). Visual Analysis of Sequences Using Fractal Geometry. In: Maimon, O., Rokach, L. (eds) Data Mining and Knowledge Discovery Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09823-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09823-4_29

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09822-7

  • Online ISBN: 978-0-387-09823-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics