Skip to main content

Part of the book series: Advances in Information Security ((ADIS,volume 33))

Abstract

The increased power and interconnectivity of computer systems available today provide the ability of storing and processing large amounts of data, resulting in networked information accessible from anywhere at any time. This information sharing and dissemination process is clearly selective. Indeed, if on the one hand there is a need to disseminate some data, there is on the other hand an equally strong need to protect those data that, for various reasons, should not be disclosed. Consider, for example, the case of a private organization making available various data regarding its business (products, sales, and so on), but at the same time wanting to protect more sensitive information, such as the identity of its customers or plans for future products. As another example, government agencies, when releasing historical data, may require a sanitization process to “blank out” information considered sensitive, either directly or because of the sensitive information it would allow the recipient to infer. Effective information sharing and dissemination can take place only if the data holder has some assurance that, while releasing information, disclosure of sensitive information is not a risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam NR, Wortman JC (1989). Security-control methods for statistical databases: A comparative study. ACM Computing Surveys, 21(4):515–56.

    Article  Google Scholar 

  2. Bourke PD, Dalenius T (1975). Some new ideas in the realm of randomized inquiries. Technical Report 5, Detpartment of Statistics, University of Stockholm, Stockholm, Sweden.

    Google Scholar 

  3. Brand R (2002). Microdata protection through noise addition. In Domingo-Ferrer J, editor, Inference Control in Statistical Databases, vol. 2316 of LNCS, pp. 97–116. Springer, Berlin Heidelberg.

    Google Scholar 

  4. Burridge J, Franconi L, Polettini S, Stander J (2002). A methodological framework for statistical disclosure limitation of business microdata. Technical Report 1.1-D4, CASC Project.

    Google Scholar 

  5. Cox LH (1980). Suppression methodology and statistical disclosure analysis. Journal of the American Statistical Association, 75(370):377–385.

    Article  MATH  Google Scholar 

  6. Cox LH (1981). Linear sensitivity measures in statistical disclosure control. Journal of Statistical Planning and Inference, 5(2):153–164.

    Article  MATH  Google Scholar 

  7. Cox LH (1987). A constructive procedure for unbiased controlled rounding. Journal of the American Statistical Association, 82(398):520–524.

    Article  MATH  Google Scholar 

  8. Cox LH (1995). Network models for complementary cell suppression. Journal of the American Statistical Association, 90(432): 1453–1462.

    Article  MATH  Google Scholar 

  9. Cox LH, Dandekar RA (2002). Synthetic tabular data — An alternative to complementary cell suppression. Unpublished manuscript.

    Google Scholar 

  10. Dalenius T, Reiss SP (1978). Data-swapping: a technique for disclosure control (extended abstract). In Proc. of the ASA Section on Survey Research Methods, pp. 191–194, Washington DC.

    Google Scholar 

  11. Dandekar R, Domingo-Ferrer J, Sebé F (2002). LHS-based hybrid microdata vs rank swapping and microaggregation for numeric microdata protection. In Domingo-Ferrer J, editor, Inference Control in Statistical Databases, vol. 2316 of LNCS, pp. 153–162. Springer, Berlin Heidelberg.

    Google Scholar 

  12. Defays D, Nanopoulos P (1993). Panels of enterprises and confidentiality: the small aggregates method. In Proc. of the 92nd Symposium on Design and Analysis of Longitudinal Surveys, pp. 195–204, Ottawa.

    Google Scholar 

  13. Denning DE (1982). Inference controls. In Cryptography and Data Security, pp. 331–392. Addison-Wesley Publishing Company, Reading, Massachusetts; Menlo Park, California; London; Amsterdam; Don Mills, Ontario; Sydney.

    Google Scholar 

  14. Domingo-Ferrer J, Mateo-Sanz JM (1999). On resampling for statistical confidentiality in contingency tables. Computers & Mathematics with Applications, 38(11–12):13–32.

    Article  MATH  MathSciNet  Google Scholar 

  15. Domingo-Ferrer J, Mateo-Sanz JM, Torra V (2001). Comparing SDC methods for microdata on the basis of information loss and disclosure risk. In Pre-proceedings of ETK-NTTS 001, vol. 2, pp. 807–826, Luxemburg. Eurostat.

    Google Scholar 

  16. Domingo-Ferrer J, Torra V (2001). Disclosure protection methods and information loss for microdata. In Doyle P, Lane JI, Theeuwes J, Zayatz L, editors, Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam.

    Google Scholar 

  17. Domingo-Ferrer J, Torra V (2001). A quantitative comparison of disclosure control methods for microdata. In Doyle P, Lane JI, Theeuwes J, and Zayatz L, editors, Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam.

    Google Scholar 

  18. Domingo-Ferrer J, Torra V (2002). Distance-based and probabilistic record linkage for re-identification of records with categorical variables. Butlleti de l’Associacio Catalana d’Intelligencia Artificial, 27.

    Google Scholar 

  19. Domingo-Ferrer J, Torra V (2003). Disclosure risk assessment in statistical microdata protection via advanced record linkage. Statistics and Computing, 13(4):343–354. Kluwer Academic Publishers.

    Article  MathSciNet  Google Scholar 

  20. Duncan GT, Keller-McNulty SA, Stokes SL (2001). Disclosure risk vs. data utility: The R-U confidentiality map. Technical report, Los Alamos National Laboratory. LA-UR-01-6428.

    Google Scholar 

  21. Duncan GT, Lambert D (1989). The risk of disclosure for microdata. Journal of Business and Economic Statistics, 7:207–217.

    Article  Google Scholar 

  22. Federal Committee on Statistical Methodology (1994). Statistical policy working paper 22. USA. Report on Statistical Disclosure Limitation Methodology.

    Google Scholar 

  23. Fellegi IP, Sunter AB (1969). A theory for record linkage. Journal of the American Statistical Association, 64(328):1183–1210.

    Article  Google Scholar 

  24. Fienberg SE (1994). A radical proposal for the provision of micro-data samples and the preservation of confidentiality. Technical Report 611, Carnegie Mellon University Department of Statistics.

    Google Scholar 

  25. Florian A (1992). An efficient sampling scheme: updated latin hypercube sampling. Probabilistic Engineering Mechanics, 7(2):123–130.

    Article  MathSciNet  Google Scholar 

  26. Franconi L, Polettini S (2004). Individual risk estimation in μ-ARGUS: a review. In Domingo-Ferrer J, Torra V, editors, Privacy in Statistical Databases, vol. 3050 of LNCS, pp. 262–372. Springer, Berlin Heidelberg.

    Google Scholar 

  27. Franconi L, Stander J (2002). A model based method for disclosure limitation of business microdata. Journal of the Royal Statistical Society D-Statistician, 51(1): 1–11.

    Article  MathSciNet  Google Scholar 

  28. Gonzalez JF, Cox LH (2005). Software for tabular data protection. Statistics in Medicine, 24(4):65–669.

    Article  MathSciNet  Google Scholar 

  29. Gouweleeuw JM, Kooiman P, Willenborg RCLJ, DeWolf PP (1997). Post randomization for statistical disclosure control: Theory and implementation. Technical Report 9731, Voorburg: Statistics Netherlands, Netherlands.

    Google Scholar 

  30. Greenberg B (1987). Rank swapping for ordinal data. Technical report, U. S. Bureau of the Census (unpublished manuscript), Washington, DC.

    Google Scholar 

  31. Hundepool A, Van deWetering A, Ramaswamy R, Franconi L, Capobianchi A, DeWolf PR Domingo-Ferrer J, Torra V, Brand R, Giessing S (2003). μ-ARGUS version 3.2 software and user manual. Statistics Netherlands. http://neon.vb.cbs.nl/casc.

    Google Scholar 

  32. Huntington DE, Lyrintzis CS (1998). Improvements to and limitations of latin hypercube sampling. Probabilistic Engineering Mechanics, 13(4):245–253.

    Article  Google Scholar 

  33. Karr AF, Sanil AP (2004). Data quality and data confidentiality for microdata: Implications and strategies. Technical Report 149, National Institute of Statistical Sciences, Research Triangle Park, NC 27709-4006 USA.

    Google Scholar 

  34. Kim JJ (1986). A method for limiting disclosure in microdata based on random noise and transformation. In Proc. of the Section on Survey Research Methods, pp. 303–308, Alexandria VA.

    Google Scholar 

  35. Kooiman PL, Willenborg L, Gouweleeuw J (1998). PRAM: A method for disclosure limitation of microdata. Technical report, Statistics Netherlands, Voorburg, NL.

    Google Scholar 

  36. Little RJA, Liu F (2002). Selective multiple imputation of keys for statistical disclosure control in microdata. In Proc. of the Section on Survey Research Methods.

    Google Scholar 

  37. Mateo-Sanz JM, Domingo-Ferrer J, Sebé F (2004). Probabilistic information loss measures for continuous microdata. Technical report, University of Tarragona, Department of Computer Engineering and Mathematics, Research Triangle Park, NC 27709-4006 USA.

    Google Scholar 

  38. Mateo-Sanz JM, Martìnez-Ballesté A, Domingo-Ferrer J (2004). Fast generation of accurate synthetic microdata. In Domingo-Ferrer J, Torra V, editors, Privacy in Statistical Databases, vol. 3050 of LNCS, pp. 298–306. Springer, Berlin Heidelberg.

    Google Scholar 

  39. Oganian A, Domingo-Ferrer J (2001). On the complexity of optimal microaggregation for statistical disclosure control. Statistical Journal of the UNECE, 18(4):345–354.

    Google Scholar 

  40. Polettini S, Franconi L (2002) Simulation methods in data protection: an approach based on maximum entropy. In Proc. of the International Conference of the Royal Statistical Society, Plymouth.

    Google Scholar 

  41. Raughnathan TE, Reiter JP, Rubin DB (2003). Multiple imputation for statistical disclosure limitation. Journal of Official Statitsics, 19(1): 1–16.

    Google Scholar 

  42. Reiss S (1982). Non-reversible privacy transform. In Proc. of the ACM Symposium on Principles of Database Systems, Los Angeles, CA, USA.

    Google Scholar 

  43. Rubin DB (1993). Discussion of statistical disclosure limitation. Journal of Official Statistics, 9(2):461–468.

    Google Scholar 

  44. Samarati P (2001). Protecting respondents’ identities in microdata release. IEEE Transactions on Knowledge and Data Engineering, 13(6):1010–1027.

    Article  Google Scholar 

  45. Computer Science and Telecommunications Board National Research Council, editors (1997). For the record protecting electronic health information. National Accademy Press, Washington, D.C., USA.

    Google Scholar 

  46. Singh AC, Yu F, Dunteman GH (2004). MASSC: A new data mask for limiting statistical information loss and disclosure. In Linden H, Riecan J, Belsby L, editors, Work Session on Statistical Data Confidentiality 2003, pp. 373–394. Eurostat, Luxemburg. Monographs in Official Statistics.

    Google Scholar 

  47. Skinner CJ, Elliot MA (2001). A measure of disclosure risk for microdata. Journal of the Royal Statistical Society, 64(4):855–867.

    MathSciNet  Google Scholar 

  48. Sullivan GR (1989). The use of added error to avoid disclosure in microdata releases. Master’s thesis, Iowa State University.

    Google Scholar 

  49. Takemura A (2001). On recent developments in statistical disclosure control techniques. In Proc. of the IAOS Satellite Meeting on Statistics for the Information Society, Tokyo, Japan.

    Google Scholar 

  50. Tendick P (1991). Optimal noise addition for preserving confidentiality in multivariate data. Journal of Statistical Planning and Inference, 27(3):341–353.

    Article  MathSciNet  Google Scholar 

  51. Tendick P, Matloff N (1994). A modified random perturbation method for database security. ACM Transactions on Database Systems, 19(1):47–63.

    Article  Google Scholar 

  52. Torra V (2004). Microaggregation for categorical variables: a median based approach. In Domingo-Ferrer J, Torra V, editors, Privacy in Statistical Databases, vol. 3050 of LNCS, pp. 162–174. Springer, Berlin Heidelberg.

    Google Scholar 

  53. Willenborg L, DeWaal T (2001). Elements of Statistical Disclosure Control. Springer-Verlag, New York, USA.

    MATH  Google Scholar 

  54. Winkler WE (1999). Re-identification methods for evaluating the confidentiality of analytically valid microdata. In Domingo-Ferrer J, editor, Statistical Data Protection. Office for Official Publications of the European Communities, Luxemburg.

    Google Scholar 

  55. Winkler WE (2004). Masking and re-identification methods for public-use microdata: Overview and research problems. In Domingo-Ferrer J, editor, Privacy in Statistical Databases 2004. Springer, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P. (2007). Microdata Protection. In: Yu, T., Jajodia, S. (eds) Secure Data Management in Decentralized Systems. Advances in Information Security, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-27696-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-27696-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-27694-6

  • Online ISBN: 978-0-387-27696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics