Skip to main content

Algorithms for Spanners in Weighted Graphs

2003; Baswana, Sen

  • Reference work entry
Encyclopedia of Algorithms
  • 428 Accesses

Keywords and Synonyms

Graph algorithms; Randomized algorithms; Shortest path; Spanner        

Problem Definition

A spanner is a sparse subgraph of a given undirected graph that preserves approximate distance between each pair of vertices. More precisely, a t-spanner of a graph \( { G=(V,E) } \) is a subgraph \( { (V,E_S), E_S\subseteq E } \) such that, for any pair of vertices, their distance in the subgraph is at most t times their distance in the original graph, where t is called the stretch factor. The spanners were defined formally by Peleg and Schäffer [14], though the associated notion was used implicitly by Awerbuch [3] in the context of network synchronizers.

Computing a t-spanner of smallest size for a given graph is a well motivated combinatorial problem with many applications. However, computing t-spanner of smallest size for a graph is NP-hard. In fact, for \( { t > 2 } \), it is NP-hard [10] even to approximate the smallest size of a t-spanner of a graph with ratio \( {...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ties can be broken arbitrarily. However, it helps conceptually to assume that all weights are distinct.

Recommended Reading

  1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28, 1167–1181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares J.: On sparse spanners of weighted graphs. Discret. Comput. Geom. 9, 81–100 (1993)

    Article  MATH  Google Scholar 

  3. Awerbuch, B.: Complexity of network synchronization. J. Assoc. Comput. Mach. 32(4), 804–823 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Awerbuch, B., Baratz, A., Peleg, D.: Efficient broadcast and light weight spanners. Tech. Report CS92-22, Weizmann Institute of Science (1992)

    Google Scholar 

  5. Awerbuch, B., Berger, B., Cowen, L., Peleg D.: Near-linear time construction of sparse neighborhood covers. SIAM J. Comput. 28, 263–277 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baswana, S., Sen, S.: A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs. Random Struct. Algorithms 30, 532–563 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baswana, S., Telikepalli, K., Mehlhorn, K., Pettie, S.: New construction of (\( { \alpha,\beta } \))-spanners and purely additive spanners. In: Proceedings of 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005, pp. 672–681

    Google Scholar 

  8. Bollobás, B., Coppersmith, D., Elkin M.: Sparse distance preserves and additive spanners. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2003, pp. 414–423

    Google Scholar 

  9. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t. SIAM J. Comput. 28, 210–236 (1998)

    Article  MATH  Google Scholar 

  10. Elkin, M., Peleg, D.: Strong inapproximability of the basic k-spanner problem. In: Proc. of 27th International Colloquim on Automata, Languages and Programming, 2000, pp. 636–648

    Google Scholar 

  11. Elkin, M., Peleg, D.: \( { (1+\epsilon,\beta) } \)-spanner construction for general graphs. SIAM J. Comput. 33, 608–631 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdös, P.: Extremal problems in graph theory. In: Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963), pp. 29–36. Publ. House Czechoslovak Acad. Sci., Prague (1964)

    Google Scholar 

  13. Halperin, S., Zwick, U.: Linear time deterministic algorithm for computing spanners for unweighted graphs. unpublished manuscript (1996)

    Google Scholar 

  14. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18, 740–747 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J. Assoc. Comput Mach. 36(3), 510–530 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Salowe, J.D.: Construction of multidimensional spanner graphs, with application to minimum spanning trees. In: ACM Symposium on Computational Geometry, 1991, pp. 256–261

    Google Scholar 

  18. Thorup, M., Zwick, U.: Approximate distance oracles. J. Assoc. Comput. Mach. 52, 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In: Proceedings of 17th Annual ACM-SIAM Symposium on Discrete Algorithms, 2006, pp. 802–809

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Baswana, S., Sen, S. (2008). Algorithms for Spanners in Weighted Graphs. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_10

Download citation

Publish with us

Policies and ethics