Skip to main content

Gomory–Hu Trees

2007; Bhalgat, Hariharan, Kavitha, Panigrahi

  • Reference work entry
Encyclopedia of Algorithms

Keywords and Synonyms

Cut trees  

Problem Definition

Let \( { G = (V,E) } \) be an undirected graph with \( { |V| = n } \) and \( { |E| = m } \). The edge connectivity of two vertices \( { s,t \in V } \), denoted by \( { \lambda(s,t) } \), is defined as the size of the smallest cut that separates s and t; such a cut is called a minimum st cut. Clearly, one can represent the \( { \lambda(s, t) } \) values for all pairs of vertices s and t in a table of size O(n 2). However, for reasons of efficiency, one would like to represent all the \( { \lambda(s, t) } \) values in a more succinct manner. Gomory–Hu trees (also known as cut trees) offer one such succinct representation of linear (i. e., O(n)) space and constant (i. e., O(1)) lookup time. It has the additional advantage that apart from representing all the \( { \lambda(s, t) } \) values, it also contains structural information from which a minimum st cut can be retrieved easily for any pair of vertices s and t.

Formally, a Gomory–Hu...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Benczúr, A.A.: Counterexamples for Directed and Node Capacitated Cut-Trees. SIAM J. Comput. 24(3), 505–510 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhalgat, A., Hariharan, R., Kavitha, T., Panigrahi, D.: An \( { \tilde{O}(mn) } \) Gomory-Hu tree construction algorithm for unweighted graphs. In: Proc. of the 39th Annual ACM Symposium on Theory of Computing, San Diego 2007

    Google Scholar 

  3. Cole, R., Hariharan, R.: A Fast Algorithm for Computing Steiner Edge Connectivity. In: Proc. of the 35th Annual ACM Symposium on Theory of Computing, San Diego 2003, pp. 167–176

    Google Scholar 

  4. Gabow, H.N.: A matroid approach to finding edge connectivity and packing arborescences. J. Comput. Syst. Sci. 50, 259–273 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldberg, A.V., Rao, S.: Beyond the Flow Decomposition Barrier. J. ACM 45(5), 783–797 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goldberg, A.V., Tsioutsiouliklis, K.: Cut Tree Algorithms: An Experimental Study. J. Algorithms 38(1), 51–83 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. Soc. Indust. Appl. Math. 9(4), 551–570 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gusfield, D.: Very Simple Methods for All Pairs Network Flow Analysis. SIAM J. Comput. 19(1), 143–155 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hariharan, R., Kavitha, T., Panigrahi, D.: Efficient Algorithms for Computing All Low s-t Edge Connectivities and Related Problems. In: Proc. of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 127–136

    Google Scholar 

  10. Karger, D., Levine, M.: Random Sampling in Residual Graphs. In: Proc. of the 34th Annual ACM Symposium on Theory of Computing 2002, pp. 63–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Panigrahi, D. (2008). Gomory–Hu Trees. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_168

Download citation

Publish with us

Policies and ethics