Skip to main content

Learning Constant-Depth Circuits

1993; Linial, Mansour, Nisan

  • Reference work entry
Encyclopedia of Algorithms
  • 204 Accesses

Keywords and Synonyms

Learning AC 0 circuits          

Problem Definition

This problem deals with learning “simple” Boolean functions \( { f: \{0,1\}^n \rightarrow \{-1,1\} } \) from uniform random labeled examples. In the basic uniform distribution PAC framework, the learning algorithm is given access to a uniform random example oracle EX(f, U) which, when queried, provides a labeled random example \( { (x,f(x)) } \) where x is drawn from the uniform distribution U over the Boolean cube \( { \{0,1\}^n. } \) Successive calls to the EX(f, U) oracle yield independent uniform random examples. The goal of the learning algorithm is to output a representation of a hypothesis function \( { h: \{0,1\}^n \rightarrow \{-1,1\} } \) which with high probability has high accuracy; formally, for any \( { \epsilon, \delta > 0 } \), given ϵ and δ the learning algorithm should output an h which with probability at least \( { 1 - \delta } \) has \( { \Pr_{x \in U} [h(x) \neq f(x)] \leq \epsilon } \).

Many variants...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Blum, A.: Learning a function of r relevant variables (open problem). In: Proceedings of the 16th Annual Conference on Learning Theory, pp. 731–733, Washington, 24–27 August 2003

    Google Scholar 

  2. Furst, M., Jackson, J., Smith, S.: Improved learning of AC0 functions. In: Proceedings of the Fourth Annual Workshop on Computational Learning Theory, pp. 317–325, Santa Cruz, (1991)

    Google Scholar 

  3. Håstad, J.: A slight sharpening of LMN. J. Comput. Syst. Sci. 63(3), 498–508 (2001)

    Article  MATH  Google Scholar 

  4. Jackson, J.: An efficient membership-query algorithm for learning DNF with respect to the uniform distribution. J. Comput. Syst. Sci. 55, 414–440 (1997)

    Article  MATH  Google Scholar 

  5. Jackson, J., Klivans, A., Servedio, R.: Learnability beyond \( { {AC^0} } \). In: Proceedings of the 34th ACM Symposium on Theory of Computing, pp. 776–784, Montréal, 23–25 May 2002

    Google Scholar 

  6. Kalai, A., Klivans, A., Mansour, Y., Servedio, R.: Agnostically learning halfspaces. In: Proceedings of the 46th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 11–20, Pittsburgh, PA, USA, 23–25 October 2005

    Google Scholar 

  7. Kharitonov, M.: Cryptographic hardness of distribution-specific learning. In: Proceedings of the 25th Annual Symposium on Theory of Computing, pp. 372–381. (1993)

    Google Scholar 

  8. Klivans, A., O'Donnell, R., Servedio, R.: Learning intersections and thresholds of halfspaces. J. Comput. Syst. Sci. 68(4), 808–840 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Klivans, A., Servedio, R.: Learning DNF in time \( { 2^{\tilde{O}(n^{1/3})} } \). J. Comput. Syst. Sci. 68(2), 303–318 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Klivans, A., Sherstov, A.: Cryptographic hardness results for learning intersections of halfspaces. In: Proceedings of the 47th Annual Symposium on Foundations of Computer Science, pp. 553–562, Berkeley, 22–24 October 2006

    Google Scholar 

  11. Kushilevitz, E., Mansour, Y.: Learning decision trees using the Fourier spectrum. SIAM J. Comput. 22(6), 1331–1348 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform and learnability. J. ACM 40(3), 607–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mansour, Y., Sahar, S.: Implementation Issues in the Fourier Transform Algorithm. Mach. Learn. 40(1), 5–33 (2000)

    Article  MATH  Google Scholar 

  14. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51(2), 231–262 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. O'Donnell, R., Servedio, R.: Learning monotone decision trees in polynomial time. In: Proceedings of the 21st Conference on Computational Complexity (CCC), pp. 213–225, Prague, 16–20 July 2006

    Google Scholar 

  16. Servedio, R.: On learning monotone DNF under product distributions. Inform Comput 193(1), 57–74 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stefankovic, D.: Fourier transforms in computer science. Masters thesis, TR-2002-03, University of Chicago (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Servedio, R. (2008). Learning Constant-Depth Circuits. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_195

Download citation

Publish with us

Policies and ethics