Skip to main content

Low Stretch Spanning Trees

2005; Elkin, Emek, Spielman, Teng

  • Reference work entry
Encyclopedia of Algorithms
  • 294 Accesses

Keywords and Synonyms

Spanning trees with low average stretch    

Problem Definition

Consider a weighted connected multigraph \( { G = (V,E,\omega) } \), where ω is a function from the edge set E of G into the set of positive reals. For a path P in G, the weight of P is the sum of weights of edges that belong to the path P. For a pair of vertices \( { u,v \in V } \), the distance between them in G is the minimum weight of a path connecting u and v in G. For a spanning tree T of G, the stretch of an edge \( { (u,v) \in E } \) is defined by

$$ \textit{stretch}_T(u,v) = \frac{\textit{dist}_T(u,v)}{\textit{dist}_G(u,v)}\:, $$

and the average stretch over all edges of E is

$$ \textit{avestr}(G,T) = {1 \over {|E|}} \sum_{(u,v) \in E} \textit{stretch}_T(u,v)\:. $$

The average stretch of a multigraph \( { G = (V,E,\omega) } \) is defined as the smallest average stretch of a spanning tree T of G, \( { \textit{avestr}(G,T) } \). The average stretch of a positive integer n, \( { \textit{avestr}(n) }...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Abraham, I., Bartal, Y., Neiman, O.: Embedding Metrics into Ultrametrics and Graphs into Spanning Trees with Constant Average Distortion. In: Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms, New Orleans, January 2007

    Google Scholar 

  2. Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic gane and its application to the k-server problem. SIAM J. Comput. 24(1), 78–100 (1995). Also available Technical Report TR-91-066, ICSI, Berkeley (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, Berlington, Oct. 1996 pp. 184–193

    Google Scholar 

  4. Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: Proceedings of the 30th annual ACM symposium on Theory of computing, Dallas, 23–26 May 1998, pp. 161–168

    Chapter  Google Scholar 

  5. Boman, E., Hendrickson, B.: On spanning tree preconditioners. Manuscript, Sandia National Lab. (2001)

    Google Scholar 

  6. Boman, E., Hendrickson, B., Vavasis, S.: Solving elliptic finite element systems in near-linear time with suppost preconditioners. Manuscript, Sandia National Lab. and Cornell, http://arXiv.org/abs/cs/0407022 Accessed 9 July 2004

  7. Chekuri, C., Hagiahayi, M.T., Kortsarz, G., Salavatipour, M.: Approximation Algorithms for Non-Uniform Buy-at-Bulk Network Design. In: Proceedings of the 47th Annual Symp. on Foundations of Computer Science, Berkeley, Oct. 2006, pp. 677–686

    Google Scholar 

  8. Deo, N., Prabhu, G.M., Krishnamoorthy, M.S.: Algorithms for generating fundamental cycles in a graph. ACM Trans. Math. Softw. 8, 26–42 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elkin, M., Emek, Y., Spielman, D., Teng, S.-H.: Lower-Stretch Spanning Trees. In: Proc. of the 37th Annual ACM Symp. on Theory of Computing, STOC'05, Baltimore, May 2005, pp. 494–503

    Google Scholar 

  10. Elkin, M., Liebchen, C., Rizzi, R.: New Length Bounds for Cycle Bases. Inf. Proc. Lett. 104(5), 186–193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Emek, Y., Peleg, D.: A tight upper bound on the probabilistic embedding of series-parallel graphs. In: Proc. of Symp. on Discr. Algorithms, SODA'06, Miami, Jan. 2006, pp. 1045–1053

    Google Scholar 

  12. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. In: Proceedings of the 35th annual ACM symposium on Theory of Computing, San Diego, June 2003, pp. 448–455

    Google Scholar 

  13. Horton, J.D.: A Polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J. Comput. 16(2), 358–366 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Spielman, D., Teng, S.-H.: Nearly-linear time algorithm for graph partitioning, graph sparsification, and solving linear systems. In: Proc. of the 36th Annual ACM Symp. on Theory of Computing, STOC'04, Chicago. USA, June 2004, pp. 81–90

    Google Scholar 

  15. Stepanec, G.F.: Basis systems of vector cycles with extremal properties in graphs. Uspekhi Mat. Nauk 19, 171–175 (1964). (In Russian)

    Google Scholar 

  16. Zykov, A.A.: Theory of Finite Graphs. Nauka, Novosibirsk (1969). (In Russian)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Elkin, M. (2008). Low Stretch Spanning Trees. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_215

Download citation

Publish with us

Policies and ethics