Skip to main content

Minimum Geometric Spanning Trees

1999; Krznaric, Levcopoulos, Nilsson

  • Reference work entry
Encyclopedia of Algorithms
  • 198 Accesses

Keywords and Synonyms

Minimum length spanning trees; Minimum weight spanning trees; Euclidean minimum spanning trees; MST; EMST      

Problem Definition

Let S be a set of n points in d‑dimensional real space where \( { d \geq 1 } \) is an integer constant. A minimum spanning tree (MST) of S is a connected acyclic graph with vertex set S of minimum total edge length. The length of an edge equals the distance between its endpoints under some metric. Under the so-called L p metric, the distance between two points x and y with coordinates (\( { x_1, x_2, \dots, x_d } \)) and (\( y_1, y_2, \dots, y_d \)), respectively, is defined as the pth root of the sum \( { \sum_{i=1}^d | x_i - y_i | ^ p } \).

Key Results

Since there is a very large number of papers concerned with geometric MSTs, only a few of them will be mentioned here.

In the common Euclidean L 2 metric, which simply measures straight-line distances, the MST problem in two dimensions can be solved optimally in time \( { O(n \log n) } \),...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Agarwal, P.K., Edelsbrunner, H., Schwarzkopf, O., Welzl, E.: Euclidean minimum spanning trees and bichromatic closest pairs. Discret. Comput. Geom. 6, 407–422 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bespamyatnikh, S.: On Constructing Minimum Spanning Trees in \( { R^k_1 } \). Algorithmica 18(4), 524–529 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bespamyatnikh, S.: An Optimal Algorithm for Closest-Pair Maintenance. Discret. Comput. Geom. 19(2), 175–195 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Callahan, P.B., Kosaraju, S.R.: Faster Algorithms for Some Geometric Graph Problems in Higher Dimensions. In: SODA 1993, pp. 291–300

    Google Scholar 

  5. Cheriton, D.and Tarjan, R.E.: Finding Minimum Spanning Trees. SIAM J. Comput. 5(4), 724–742 (1976)

    Article  MathSciNet  Google Scholar 

  6. Clarkson, K.L.: Fast Expected-Time and Approximation Algorithms for Geometric Minimum Spanning Trees. In: Proc. STOC 1984, pp. 342–348

    Google Scholar 

  7. Czumaj, A., Ergün, F., Fortnow, L., Magen, A., Newman, I., Rubinfeld, R., Sohler, C.: Approximating the Weight of the Euclidean Minimum Spanning Tree in Sublinear Time. SIAM J. Comput. 35(1), 91–109 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eppstein, D.: Dynamic Euclidean Minimum Spanning Trees and Extrema of Binary Functions. Discret. Comput. Geom. 13, 111–122 (1995)

    Google Scholar 

  9. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and Related Techniques for Geometry Problems. In: STOC 1984, pp. 135–143

    Google Scholar 

  10. Krznaric, D., Levcopoulos, C., Nilsson, B.J.: Minimum Spanning Trees in d Dimensions. Nord. J. Comput. 6(4), 446–461 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Narasimhan, G., Zachariasen, M.: Geometric Minimum Spanning Trees via Well‐Separated Pair Decompositions. ACM J. Exp. Algorithms 6, 6 (2001)

    Article  MathSciNet  Google Scholar 

  12. Salowe, J.S.: Constructing multidimensional spanner graphs. Int. J. Comput. Geom. Appl. 1(2), 99–107 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vaidya, P.M.: Minimum Spanning Trees in k-Dimensional Space. SIAM J. Comput. 17(3), 572–582 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yao, A.C.: On Constructing Minimum Spanning Trees in k‑Dimensional Spaces and Related Problems. SIAM J. Comput. 11(4), 721–736 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Levcopoulos, C. (2008). Minimum Geometric Spanning Trees. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_236

Download citation

Publish with us

Policies and ethics