Skip to main content

Quantum Algorithms for Class Group of a Number Field

2005; Hallgren

  • Reference work entry
Encyclopedia of Algorithms
  • 141 Accesses

Problem Definition

Associated with each number field is a finite abelian group called the class group. The order of the class group is called the class number. Computing the class number and the structure of the class group of a number field are among the main tasks in computational algebraic number theory [3].       

A number field F can be defined as a subfield of the complex numbers \( \mathbb{C} \) which is generated over the rational numbers \( \mathbb{Q} \) by an algebraic number, i. e. \( F = \mathbb{Q} (\theta) \) where Î¸ is the root of a polynomial with rational coefficients. The ring of integers \( \mathcal{O} \) of F is the subset consisting of all elements that are roots of monic polynomials with integer coefficients. The ring \( \mathcal{O} \subseteq F \) can be thought of as a generalization of \( \mathbb{Z} \), the ring of integers in \( \mathbb{Q} \). In particular, one can ask whether \( \mathcal{O} \) is a principal ideal domain and whether elements in \( \mathcal{O} \)...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Buchmann, J.: A subexponential algorithm for the determination of class groups and regulators of algebraic number fields. In: Goldstein, C. (ed.) Séminaire de Théorie des Nombres, Paris 1988–1989, Progress in Mathematics, vol. 91, pp. 27–41. Birkhäuser (1990)

    Google Scholar 

  2. Buchmann, J.A., Williams, H.C.: A key exchange system based on real quadratic fields (extended abstract). In: Brassard, G. (ed.) Advances in Cryptology–CRYPTO '89. Lecture Notes in Computer Science, vol. 435, 20–24 Aug 1989, pp. 335–343. Springer (1990)

    Google Scholar 

  3. Cohen, H., A course in computational algebraic number theory, vol. 138 of Graduate Texts in Mathematics. Springer (1993)

    Google Scholar 

  4. Hallgren, S.: Fast quantum algorithms for computing the unit group and class group of a number field. In: Proceedings of the 37th ACM Symposium on Theory of Computing. (2005)

    Google Scholar 

  5. Hamdy, S., Maurer, M.: Feige-fiat-shamir identification based on real quadratic fields, Tech. Report TI-23/99. Technische Universität Darmstadt, Fachbereich Informatik. http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/ (1999)

  6. Schmidt, A., Vollmer, U.: Polynomial time quantum algorithm for the computation of the unit group of a number field. In: Proceedings of the 37th ACM Symposium on Theory of Computing. (2005)

    Google Scholar 

  7. Thiel, C.: On the complexity of some problems in algorithmic algebraic number theory, Ph. D. thesis. Universität des Saarlandes, Saarbrücken, Germany (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Hallgren, S. (2008). Quantum Algorithms for Class Group of a Number Field. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_310

Download citation

Publish with us

Policies and ethics