Skip to main content

RNA Secondary Structure Prediction by Minimum Free Energy

2006; Ogurtsov, Shabalina, Kondrashov, Roytberg

  • Reference work entry
Encyclopedia of Algorithms

Keywords and Synonyms

RNA Folding        

Problem Definition

This problem is concerned with predicting the set of base pairs formed in the native structure of an RNA molecule. The main motivation stems from structure being crucial for function and the growing appreciation of the importance of RNA molecules in biological processes. Base pairing is the single most important factor determining structure formation. Knowledge of the secondary structure alone also provides information about stretches of unpaired bases that are likely candidates for active sites. Early work [7] focused on finding structures maximizing the number of base pairs. With the work of Zuker and Stiegler [17] focus shifted to energy minimization in a model approximating the Gibbs free energy of structures.

Notation

Let \( { s \in \{A, C, G, U\}^* } \) denote the sequence of bases of an RNA molecule. Use \( { X \cdot Y } \) where \( { X, Y \in \{A, C, G, U\} } \) to denote a base pair between bases of type X and Y, and \( { i...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Dowell, R., Eddy, S.R.: Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction. BMC Bioinformatics 5, 71 (2004)

    Article  Google Scholar 

  2. Gardner, P.P., Giegerich, R.: A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 30, 140 (2004)

    Article  Google Scholar 

  3. Hofacker, I.L., Stadler, P.F.: Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics 22, 1172–1176 (2006)

    Article  Google Scholar 

  4. Jacobson, H., Stockmayer, W.H.: Intramolecular reaction in polycondensations. I. the theory of linear systems. J. Chem. Phys. 18, 1600–1606 (1950)

    Google Scholar 

  5. Lyngsø, R.B., Zuker, M., Pedersen, C.N.S., Fast evaluation of internal loops in RNA secondary structure prediction. Bioinformatics 15, 440–445 (1999)

    Article  Google Scholar 

  6. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999)

    Article  Google Scholar 

  7. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci. USA 77, 6309–6313 (1980)

    Article  Google Scholar 

  8. Ogurtsov, A.Y., Shabalina, S.A., Kondrashov, A.S., Roytberg, M.A.: Analysis of internal loops within the RNA secondary structure in almost quadratic time. Bioinformatics 22, 1317–1324 (2006)

    Article  Google Scholar 

  9. Rivas, E., Eddy, S.R.: Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics 16, 583–605 (2000)

    Article  Google Scholar 

  10. Tinoco, I., Borer, P.N., Dengler, B., Levine, M.D., Uhlenbeck, O.C., Crothers, D.M., Gralla, J.: Improved estimation of secondary structure in ribonucleic acids. Nat. New Biol. 246, 40–41 (1973)

    Google Scholar 

  11. Tinoco, I., Uhlenbeck, O.C., Levine, M.D.: Estimation of secondary structure in ribonucleic acids. Nature 230, 362–367 (1971)

    Article  Google Scholar 

  12. Washietl, S., Hofacker, I.L., Stadler, P.F.: Fast and reliable prediction of noncoding RNA. Proc. Natl. Acad. Sci. USA 102, 2454–59 (2005)

    Article  Google Scholar 

  13. Waterman, M.S., Smith, T.F.: Rapid dynamic programming methods for RNA secondary structure. Adv. Appl. Math. 7, 455–464 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Workman, C., Krogh, A.: No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution. Nucleic Acids Res. 27, 4816–4822 (1999)

    Article  Google Scholar 

  15. Zuker, M.: On finding all suboptimal foldings of an RNA molecule. Science 244, 48–52 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zuker, M.: Calculating nucleic acid secondary structure. Curr. Opin. Struct. Biol. 10, 303–310 (2000)

    Article  Google Scholar 

  17. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Lyngsø, R. (2008). RNA Secondary Structure Prediction by Minimum Free Energy. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_347

Download citation

Publish with us

Policies and ethics