Skip to main content

Robust Geometric Computation

2004; Li, Yap

  • Reference work entry
Encyclopedia of Algorithms

Keywords and Synonyms

Exact geometric computation Floating-point filter ; Dynamic and static filters; Topological consistency              

Problem Definition

Algorithms in computational geometry are usually designed under the Real RAM model. In implementing these algorithms, however, fixed-precision arithmetic is used in place of exact arithmetic. This substitution introduces numerical errors in the computations that may lead to nonrobust behavior in the implementation, such as infinite loops or segmentation faults.

There are various approaches in the the literature addressing the problem of nonrobustness in geometric computations; see [9] for a survey. These approaches can be classified along two lines: the arithmetic approach and the geometric approach.

The arithmetic approach tries to address nonrobustness in geometric algorithms by handling the numerical errors arising because of fixed-precision arithmetic; this can be done, for instance, by using multi-precision arithmetic [6], or by using...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Schmer, K. M., Schmer, E.: A computational basis for conic arcs and boolean operations on conic polygons. In: 10th European Symposium on Algorithms (ESA'02), pp. 174–186, (2002) Lecture Notes in CS, No. 2461

    Google Scholar 

  2. Burnikel, C., Funke, S., Mehlhorn, K., Schirra, S., Schmitt, S.: A separation bound for real algebraic expressions. In: Lecture Notes in Computer Science, pp. 254–265. Springer, vol 2161 (2001)

    Google Scholar 

  3. Chang, E.C., Choi, S.W., Kwon, D., Park, H., Yap, C.: Shortest Paths for Disc Obstacles is Computable. In: Gao, X.S., Michelucci, D. (eds.) Special Issue on Geometric Constraints. Int. J. Comput. Geom. Appl. 16(5–6), 567–590 (2006), Also appeared in Proc. 21st ACM Symp. Comp. Geom., pp. 116–125 (2005)

    Google Scholar 

  4. Fortune, S.J.: Stable maintenance of point-set triangulations in two dimensions. IEEE Found. Comput. Sci.: 30, 494–499 (1989)

    Google Scholar 

  5. Fortune, S.J., van Wyk, C.J.: Efficient exact arithmetic for computational geometry. In: Proceeding 9th ACM Symposium on Computational Geometry, pp. 163–172 (1993)

    Google Scholar 

  6. Gowland, P., Lester, D.: Asurvey of exact arithmetic implementations. In: Blank, J., Brattka, V., Hertling, P. (eds.) Computability and Complexity in Analysis, pp. 30–47. Springer, 4th International Workshop, CCA 2000, Swansea, UK, September 17–19, (2000), Selected Papers. Lecture Notes in Computer Science, No. 2064

    Google Scholar 

  7. Greene, D.H., Yao, F.F.: Finite-resolution computational geometry. IEEE Found. Comput. Sci. 27, 143–152 (1986)

    Google Scholar 

  8. Guibas, L., Salesin, D., Stolfi, J.: Epsilon geometry: building robust algorithms from imprecise computations. ACM Symp Comput. Geometr. 5, 208–217 (1989)

    Google Scholar 

  9. Li, C., Pion, S., Yap, C.K.: Recent progress in Exact Geometric Computation. J. Log. Algebr. Program. 64(1), 85–111 (2004)

    Article  MathSciNet  Google Scholar 

  10. Ouchi, K.: Real/Expr: Implementation of an exact computation package. Master's thesis, New York University, Department of Computer Science, Courant Institute, January (1997). URL http://cs.nyu.edu/exact/doc/

  11. Pion, S., Yap, C.: Constructive root bound method for k-ary rational input numbers, September, (2002). Extended Abstract. Submitted, (2003) ACM Symposium on Computational Geometry

    Google Scholar 

  12. Richardson, D.: How to recognize zero. J. Symb. Comput. 24, 627–645 (1997)

    Article  MATH  Google Scholar 

  13. Sugihara, K., Iri, M., Inagaki, H., Imai, T.: Topology-oriented implementation—an approach to robust geometric algorithms. Algorithmica 27, 5–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yap, C.K.: Theory of Real Computation according to EGC. To appear in LNCS Volume based on talks at a Dagstuhl Seminar “Reliable Implementation of Real Number Algorithms: Theory and Practice”, Jan 8–13, (2006)

    Google Scholar 

  15. Yap, C.K., Dubé, T.: The exact computation paradigm. In: Du, D.Z., Hwang, F.K.: (eds.) Computing in Euclidean Geometry, 2nd edn., pp. 452–492. World Scientific Press, Singapore (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Yap, C., Sharma, V. (2008). Robust Geometric Computation. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_349

Download citation

Publish with us

Policies and ethics