Keywords and Synonyms
Balanced cuts
Problem Definition
The (balanced) separator problem asks for a cut of minimum (edge)-weight in a graph, such that the two shores of the cut have approximately equal (node)-weight.
Formally, given an undirected graph \( G=(V,E) \), with a nonnegative edge-weight function \( c:E\to\mathbb{R}_+ \), a nonnegative node-weight function \( \pi:V\to\mathbb{R}_+ \), and a constant \( b\leq 1/2 \), a cut \( (S:V\setminus S) \) is said to be b -balanced, or a \( (b,1-b) \) -separator, if \( b\pi(V)\leq \pi(S)\leq (1-b)\pi(V) \) \( ( \)where \( \pi(S) \) stands for \( \sum_{v\in S} \pi(v) \) \( ) \).
Problem 1 (b-balanced separator)
Input: Edge- and node-weighted graph \( G=(V,E,c,\pi) \), constant \( b\leq 1/2 \).
Output: A b-balanced cut \( (S:V\setminus S) \). Goal: minimize the edge weight \( c(\delta(S)) \).
Closely related is the product sparsest cut problem.
Problem 2 ((Product) Sparsest cut)
Input: Edge- and node-weighted graph \( G=(V,E,c,\pi) \).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Recommended Reading
Agrawal, A., Klein, P.N., Ravi, R.: Cutting down on fill using nested dissection: provably good elimination orderings. In: Brualdi, R.A., Friedland, S., Klee, V. (eds.) Graph theory and sparse matrix computation. IMA Volumes in mathematics and its applications, pp. 31–55. Springer, New York (1993)
Arora, S., Hazan, E., Kale, S.: \( O(\sqrt{\text{log} n}) \) approximation to sparsest cut in \( \tilde{O}(n^2) \) time. In: FOCS '04: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS'04), pp. 238–247. IEEE Computer Society, Washington (2004)
Arora, S., Kale, S.: A combinatorial, primal-dual approach to semidefinite programs. In: STOC '07: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 227–236. ACM (2007)
Arora, S., Lee, J.R., Naor, A.: Euclidean distortion and the sparsest cut. In: STOC '05: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pp. 553–562. ACM Press, New York (2005)
Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. In: STOC '04: Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 222–231. ACM Press, New York (2004)
Aumann, Y., Rabani, Y.: An (log ) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput. 27(1), 291–301 (1998)
Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in \( \tilde{O}(n^2) \) time. In: STOC '96: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 47–55. ACM Press, New York (1996)
Bhatt, S.N., Leighton, F.T.: A framework for solving vlsi graph layout problems. J. Comput. Syst. Sci. 28(2), 300–343 (1984)
Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18(2), 238–255 (1995)
Bourgain, J.: On Lipshitz embedding of finite metric spaces in Hilbert space. Israel J. Math. 52, 46–52 (1985)
Devanur, N.R., Khot, S.A., Saket, R., Vishnoi, N.K.: Integrality gaps for sparsest cut and minimum linear arrangement problems. In: STOC '06: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pp. 537–546. ACM Press, New York (2006)
Even, G., Naor, J.S., Rao, S., Schieber, B.: Divide-and-conquer approximation algorithms via spreading metrics. J. ACM 47(4), 585–616 (2000)
Feige, U., Krauthgamer, R.: A polylogarithmic approximation of the minimum bisection. SIAM J. Comput. 31(4), 1090–1118 (2002)
Fleischer, L.: Approximating fractional multicommodity flow independent of the number of commodities. SIAM J. Discret. Math. 13(4), 505–520 (2000)
Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other fractional packing problems. In: FOCS '98: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, p. 300. IEEE Computer Society, Washington (1998)
Karakostas, G.: Faster approximation schemes for fractional multicommodity flow problems. In: SODA '02: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 166–173. Society for Industrial and Applied Mathematics, Philadelphia (2002)
Khandekar, R., Rao, S., Vazirani, U.: Graph partitioning using single commodity flows. In: STOC '06: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pp. 385–390. ACM Press, New York (2006)
Khot, S., Vishnoi, N.K.: The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l1. In: FOCS '07: Proceedings of the 46th Annual IEEE Symposium on Foundations and Computer Science, pp. 53–62. IEEE Computer Society (2005)
Klein, P.N., Plotkin, S.A., Stein, C., Tardos, É.: Faster approximation algorithms for the unit capacity concurrent flow problem with applications to routing and finding sparse cuts. SIAM J. Comput. 23(3), 466–487 (1994)
Krauthgamer, R., Rabani, Y.: Improved lower bounds for embeddings into l1. In: SODA '06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pp. 1010–1017. ACM Press, New York (2006)
Lang, K., Rao, S.: Finding near-optimal cuts: an empirical evaluation. In: SODA '93: Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, pp. 212–221. Society for Industrial and Applied Mathematics, Philadelphia (1993)
Leighton, F.T., Makedon, F., Plotkin, S.A., Stein, C., Stein, É., Tragoudas, S.: Fast approximation algorithms for multicommodity flow problems. J. Comput. Syst. Sci. 50(2), 228–243 (1995)
Leighton, T., Rao, S.: An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In: Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pp. 422–431, IEEE Computer Society (1988)
Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)
Leong, T., Shor, P., Stein, C.: Implementation of a combinatorial multicommodity flow algorithm. In: Johnson, D.S., McGeoch, C.C. (eds.) Network flows and matching. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 12, pp. 387–406. AMS, Providence (1991)
Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Comb. 15(2), 215–245 (1995)
Shahrokhi, F., Matula, D.W.: The maximum concurrent flow problem. J. ACM 37(2), 318–334 (1990)
Shmoys, D.B.: Cut problems and their applications to divide-and-conquer. In: Hochbaum, D.S. (ed.) Approximation algorithms for NP-hard problems, pp. 192–235. PWS Publishing Company, Boston, MA (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag
About this entry
Cite this entry
Konjevod, G. (2008). Separators in Graphs. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_362
Download citation
DOI: https://doi.org/10.1007/978-0-387-30162-4_362
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-30770-1
Online ISBN: 978-0-387-30162-4
eBook Packages: Computer ScienceReference Module Computer Science and Engineering