Skip to main content

Separators in Graphs

1998; Leighton, Rao 1999; Leighton, Rao

  • Reference work entry
Encyclopedia of Algorithms
  • 293 Accesses

Keywords and Synonyms

Balanced cuts                    

Problem Definition

The (balanced) separator problem asks for a cut of minimum (edge)-weight in a graph, such that the two shores of the cut have approximately equal (node)-weight.

Formally, given an undirected graph \( G=(V,E) \), with a nonnegative edge-weight function \( c:E\to\mathbb{R}_+ \), a nonnegative node-weight function \( \pi:V\to\mathbb{R}_+ \), and a constant \( b\leq 1/2 \), a cut \( (S:V\setminus S) \) is said to be b -balanced, or a \( (b,1-b) \) -separator, if \( b\pi(V)\leq \pi(S)\leq (1-b)\pi(V) \) \( ( \)where \( \pi(S) \) stands for \( \sum_{v\in S} \pi(v) \) \( ) \).

Problem 1 (b-balanced separator)

Input: Edge- and node-weighted graph \( G=(V,E,c,\pi) \), constant \( b\leq 1/2 \).

Output: A b-balanced cut \( (S:V\setminus S) \). Goal: minimize the edge weight \( c(\delta(S)) \).

Closely related is the product sparsest cut problem.

Problem 2 ((Product) Sparsest cut)

Input: Edge- and node-weighted graph \( G=(V,E,c,\pi) \).

...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Agrawal, A., Klein, P.N., Ravi, R.: Cutting down on fill using nested dissection: provably good elimination orderings. In: Brualdi, R.A., Friedland, S., Klee, V. (eds.) Graph theory and sparse matrix computation. IMA Volumes in mathematics and its applications, pp. 31–55. Springer, New York (1993)

    Chapter  Google Scholar 

  2. Arora, S., Hazan, E., Kale, S.: \( O(\sqrt{\text{log} n}) \) approximation to sparsest cut in \( \tilde{O}(n^2) \) time. In: FOCS '04: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS'04), pp. 238–247. IEEE Computer Society, Washington (2004)

    Chapter  Google Scholar 

  3. Arora, S., Kale, S.: A combinatorial, primal-dual approach to semidefinite programs. In: STOC '07: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 227–236. ACM (2007)

    Google Scholar 

  4. Arora, S., Lee, J.R., Naor, A.: Euclidean distortion and the sparsest cut. In: STOC '05: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pp. 553–562. ACM Press, New York (2005)

    Chapter  Google Scholar 

  5. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. In: STOC '04: Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 222–231. ACM Press, New York (2004)

    Chapter  Google Scholar 

  6. Aumann, Y., Rabani, Y.: An (log ) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput. 27(1), 291–301 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in \( \tilde{O}(n^2) \) time. In: STOC '96: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 47–55. ACM Press, New York (1996)

    Chapter  Google Scholar 

  8. Bhatt, S.N., Leighton, F.T.: A framework for solving vlsi graph layout problems. J. Comput. Syst. Sci. 28(2), 300–343 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18(2), 238–255 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourgain, J.: On Lipshitz embedding of finite metric spaces in Hilbert space. Israel J. Math. 52, 46–52 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Devanur, N.R., Khot, S.A., Saket, R., Vishnoi, N.K.: Integrality gaps for sparsest cut and minimum linear arrangement problems. In: STOC '06: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pp. 537–546. ACM Press, New York (2006)

    Chapter  Google Scholar 

  12. Even, G., Naor, J.S., Rao, S., Schieber, B.: Divide-and-conquer approximation algorithms via spreading metrics. J. ACM 47(4), 585–616 (2000)

    Article  MathSciNet  Google Scholar 

  13. Feige, U., Krauthgamer, R.: A polylogarithmic approximation of the minimum bisection. SIAM J. Comput. 31(4), 1090–1118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fleischer, L.: Approximating fractional multicommodity flow independent of the number of commodities. SIAM J. Discret. Math. 13(4), 505–520 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other fractional packing problems. In: FOCS '98: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, p. 300. IEEE Computer Society, Washington (1998)

    Google Scholar 

  16. Karakostas, G.: Faster approximation schemes for fractional multicommodity flow problems. In: SODA '02: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 166–173. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Google Scholar 

  17. Khandekar, R., Rao, S., Vazirani, U.: Graph partitioning using single commodity flows. In: STOC '06: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pp. 385–390. ACM Press, New York (2006)

    Chapter  Google Scholar 

  18. Khot, S., Vishnoi, N.K.: The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l1. In: FOCS '07: Proceedings of the 46th Annual IEEE Symposium on Foundations and Computer Science, pp. 53–62. IEEE Computer Society (2005)

    Google Scholar 

  19. Klein, P.N., Plotkin, S.A., Stein, C., Tardos, É.: Faster approximation algorithms for the unit capacity concurrent flow problem with applications to routing and finding sparse cuts. SIAM J. Comput. 23(3), 466–487 (1994)

    Google Scholar 

  20. Krauthgamer, R., Rabani, Y.: Improved lower bounds for embeddings into l1. In: SODA '06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pp. 1010–1017. ACM Press, New York (2006)

    Chapter  Google Scholar 

  21. Lang, K., Rao, S.: Finding near-optimal cuts: an empirical evaluation. In: SODA '93: Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, pp. 212–221. Society for Industrial and Applied Mathematics, Philadelphia (1993)

    Google Scholar 

  22. Leighton, F.T., Makedon, F., Plotkin, S.A., Stein, C., Stein, É., Tragoudas, S.: Fast approximation algorithms for multicommodity flow problems. J. Comput. Syst. Sci. 50(2), 228–243 (1995)

    Google Scholar 

  23. Leighton, T., Rao, S.: An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In: Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pp. 422–431, IEEE Computer Society (1988)

    Google Scholar 

  24. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Leong, T., Shor, P., Stein, C.: Implementation of a combinatorial multicommodity flow algorithm. In: Johnson, D.S., McGeoch, C.C. (eds.) Network flows and matching. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 12, pp. 387–406. AMS, Providence (1991)

    Google Scholar 

  26. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Comb. 15(2), 215–245 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shahrokhi, F., Matula, D.W.: The maximum concurrent flow problem. J. ACM 37(2), 318–334 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shmoys, D.B.: Cut problems and their applications to divide-and-conquer. In: Hochbaum, D.S. (ed.) Approximation algorithms for NP-hard problems, pp. 192–235. PWS Publishing Company, Boston, MA (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Konjevod, G. (2008). Separators in Graphs. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_362

Download citation

Publish with us

Policies and ethics