Skip to main content

Evolutionary Computation in Finance

  • Reference work entry
Encyclopedia of Machine Learning

Definition

Evolutionary computation (EC) in finance is an area of research and knowledge which involves the use of techniques, known as evolutionary algorithms (EAs), to approach topics in finance. This area of knowledge is similar to EC in economics, in fact such areas frequently overlap regarding some of the topics approached. The application of EC in finance pursues two main goals: first, to overcome the limitations of some theoretical models (and the strong assumptions being made by such models) and second, to innovate in this extremely competitive area of research.

Motivation and Background

Evolutionary computation is a field in Machine Learning in which the developed techniques apply the principle of Evolution in several different ways. The application of EC in finance includes portfolio optimization, financial forecasting, asset pricing, just to mention some examples.

In finance, competition is at the center of the everyday activities by the individuals and companies that...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  • Allen, F., & Karjalainen, R. (1999). Using genetic algorithms to find technical trading rules. Journal of Financial Economics, 51, 245–271.

    Article  Google Scholar 

  • Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23(4), 589–609.

    Article  Google Scholar 

  • Arthur, W. B. (1991). Learning and adaptive economic behavior. Designing economic agents that act like human agents: A behavioral approach to bounded rationality. American Economic Review, 81, 353–359.

    Google Scholar 

  • Arthur, W. B. (1994). Inductive reasoning and bounded rationality: The El Farol problem. American Economic Review, 84, 406–411.

    Google Scholar 

  • Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R. G., & Talyer, P. (1997). Asset pricing under endogenous expectations in an artificial stock market. In W. B. Arthur, S. Durlauf, & D. Lane (Eds.), The economy as an evolving complex system II. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Atiya, A. F. (2001). Bankruptcy prediction for credit risk using neural networks: A survey and new results. IEEE Transactions on Neural Networks, 12(4), 929–935.

    Article  Google Scholar 

  • Bak, P., Paczuski, M., & Shubik, M. (1997). Price variations in a stock market with many agents. Physica A, 246, 430–453.

    Article  Google Scholar 

  • Bhattacharyya, S., Pictet, O. V., & Zumbach, G. (2002). Knowledge-intensive genetic discovery in foreign exchange markets. IEEE Transactions on evolutionary computation, 6(2), 169–181.

    Article  Google Scholar 

  • Brabazon, A., & O’Neill, M. (2004). Evolving technical trading rules for spot foreign-exchange markets using grammatical evolution. Computational Management Science, 1(3), 311–327.

    Article  MATH  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth, CA: Wadsworth International Group.

    MATH  Google Scholar 

  • Challet, D., Marsili, M., & Zhang, Y. C. (2000). Modeling market mechanism with minority game. Physica A, 276, 284–315.

    Article  MathSciNet  Google Scholar 

  • Challet, D., & Zhang, Y. C. (1997). Emergence of cooperation and organization in an evolutionary game. Physica A, 246, 407.

    Article  Google Scholar 

  • Chen, S. H., & Lu, C. F. (1999). Would evolutionary computation help in designs of artificial neural nets in forecasting financial time series? In IEEE Proceedings of 1999 congress on evolutionary computation, (pp. 275–280). New Jersey: IEEE Press.

    Google Scholar 

  • Chen, S. H., Wang, H. S., & Zhang, B. T. (1999). Forecasting high-frequency financial time series with evolutionary neural trees: The case of hang-seng stock index. In H. R. Arabnia (Ed.), Proceedings of the international conference on artificial intelligence, IC-AI 9́9 (Vol. 2, pp. 437–443). Las Vegas, NV: CSREA Press.

    Google Scholar 

  • Chen, S. H., & Yeh, C. H. (2001). Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market. Journal of Economic Dynamics and Control, 25(3–4), 363–393.

    Article  MATH  Google Scholar 

  • Chen, S. H., Yeh, C. H., & Lee, W. C. (1998). Option pricing with genetic programming. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, et al. (Eds.), Proceedings of the third annual conference, genetic programming 1998: (pp. 32–37). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Cincotti, S., Ponta, L., & Raberto, M. (2005). A multi-assets artifcial stock market with zero-intelligence traders. In WEHIA 2005, Essex, UK.

    Google Scholar 

  • Dempster, M. A. H., Payne, T. W., Romahi, Y., & Thompson, G. W. P. (2001). Computational learning techniques for intraday fx trading using popular technical indicators. IEEE Transactions on Neural Networks, 12, 744–754.

    Article  Google Scholar 

  • Diosan, L. (2005). A multi-objective evolutionary approach to the portfolio optimization problem. In CIMCA ’05: Proceedings of the international conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce Vol. 2 (CIMCA-IAWTIC’06) (pp. 183–187). Washington DC: IEEE Computer Society.

    Google Scholar 

  • Fan, K., Brabazon, A., O’Sullivan, C., & O’Neill, M. (2007). Option pricing model calibration using a real-valued quantum-inspired evolutionary algorithm. In GECCO ’07: Proceedings of the 9th annual conference on genetic and evolutionary computation (pp. 1983–1990). New York: ACM.

    Chapter  Google Scholar 

  • Fernández, F., & Isasi, P. (2004). Evolutionary design of nearest prototype classifiers. Journal of Heuristics, 10(4), 431–454.

    Article  Google Scholar 

  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179.

    Google Scholar 

  • Garcia-Almanza, A. L., & Tsang, E. P. K. (2008). Evolving decision rules to predict investment opportunities. International Journal of Automation and Computing, 5(1), 22–31.

    Article  Google Scholar 

  • Ghandar, A., Michalewicz, Z., Schmidt, M., To, T. D., & Zurbrugg, R. (2008). Computational intelligence for evolving trading rules. IEEE Transactions on Evolutionary Computation, 13(1), 71–86.

    Article  Google Scholar 

  • Gode, D. K., & Sunder, S. (1992). Allocative efficiency of markets with zero intelligence (z1) traders: Market as a partial substitute forindividual rationality. GSIA working papers 1992-16, Carnegie Mellon University, Tepper School of Business.

    Google Scholar 

  • Grothmann, R. (2002). Multi-agent market modeling based on neural networks. PhD thesis, University of Bremen, Germany.

    Google Scholar 

  • Hassan, G., & Clack, C. D. (2008). Multiobjective robustness for portfolio optimization in volatile environments. In GECCO ’08: Proceedings of the 10th annual conference on Genetic and evolutionary computation (pp. 1507–1514). New York: ACM.

    Chapter  Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press.

    Google Scholar 

  • Holland, J. H., & Miller, J. H. (1991). Artificial adaptive agents in economic theory. The American Economic Review, 81, 365–370.

    Google Scholar 

  • Huang, C. L., Chen, M. C., & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 33(4), 847–856.

    Article  MathSciNet  Google Scholar 

  • Huang, Z., Chen, H., Hsu, C. J., Chen, W. H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems, 37(4), 543–558.

    Article  Google Scholar 

  • Hull, J. (2008). Options, futures and other derivatives. Prentice Hall Series in Finance. New Jersey: Prentice Hall. 7th Edition.

    Google Scholar 

  • Kirman, A. P. (1992). Whom or what does the representative individual represents? The Journal of Economic Perspectives, 6, 117–136.

    Google Scholar 

  • Kumar, S., Thulasiram, R. K., & Thulasiraman, P. (2008). A bioinspired algorithm to price options. In C3S2E ’08: Proceedings of the 2008 C3S2E conference (pp. 11–22). New York: ACM.

    Chapter  Google Scholar 

  • LeBaron, B. (2001). A builder’s guide to agent based financial markets. Quantitative Finance, 1, 254–261.

    Article  Google Scholar 

  • Lensberg, T., Eilifsen, A., & McKee, T. E. (2006). Bankruptcy theory development and classification via genetic programming. European Journal of Operational Research, 169(2), 677–697; Feature cluster on scatter search methods for optimization.

    Google Scholar 

  • Levy, M., Levy, H., & Solomon, S. (1994). A microscopic model of the stock market: cycles, booms and crashes. Economics Letters, 45, 103–111.

    Article  MATH  Google Scholar 

  • Lipinski, P. (2004). Evolutionary data-mining methods in discovering stock market expertise from financial time series. PhD thesis, University of Wroclaw, Wroclaw, Poland.

    Google Scholar 

  • Loraschi, A., & Tettamanzi, A. (1995). An evolutionary algorithm for portfolio selection in a downside risk framework. The European Journal of Finance, 1994.

    Google Scholar 

  • Loraschi, A., Tettamanzi, A., Tomassini, M., Svizzero, C., Scientifico, C., & Verda, P. (1995). Distributed genetic algorithms with an application to portfolio selection. In Artificial neural nets and genetic (pp. 384–387). Berlin: Springer.

    Google Scholar 

  • Lux, T. (1998). The socio-economic dynamics of speculative markets: Interacting agents, chaos, and the fat tails of return distributions. Journal of Economic Behavior and Organization, 33, 143–165.

    Article  Google Scholar 

  • Lux, T., & Ausloos, M. (2002). Market fluctuations I: Scaling, multiscaling and their possible origins. In A. Bunde, J. Kropp, & H. J. Schellnhuber (Eds.), Theories of disaster – scaling laws governing weather, body, and stock market dynamics (pp. 373–409). Berlin: Springer.

    Google Scholar 

  • Maringer, D. (2005). Portfolio management with heuristic optimization. Advances in computational management science (Vol. 8). Berlin: Springer.

    Google Scholar 

  • Martens, D., Baesens, B., Gestel, T. V., & Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. European Journal of Operational Research, 183(3), 1466–1476.

    Article  MATH  Google Scholar 

  • Martinez-Jaramillo, S., & Tsang, E. P. K. (2009a). Evolutionary computation and artificial financial markets. Studies in computational intelligence (Vol. 185, pp. 137–179). Berlin: Springer.

    Google Scholar 

  • Martinez-Jaramillo, S., & Tsang, E. P. K. (2009b). An heterogeneous, endogenous and coevolutionary gp-based financial market. IEEE Transactions on Evolutionary Computation, 13, 33–55.

    Article  Google Scholar 

  • Ong, C. S., Huang, J. J., & Tzeng, G. H. (2005). Building credit scoring models using genetic programming. Expert Systems with Applications, 29(1), 41–47.

    Article  Google Scholar 

  • Paleologo, G., Elisseeff, A., & Antonini, G. (2010). Subagging for credit scoring models. European Journal of Operational Research. 201(2), 490–499.

    Article  Google Scholar 

  • Potvin, J. Y., Soriano, P., & Vallée, M. (2004). Generating trading rules on the stock markets with genetic programming. Computers and Operations Research, 31(7), 1033–1047.

    Article  MATH  Google Scholar 

  • Quintana, D., Saez, Y., Mochon, A., & Isasi, P. (2008). Early bankruptcy prediction using enpc. Applied Intelligence, 29(2), 157–161.

    Article  Google Scholar 

  • Schoreels, C., Logan, B., & Garibaldi, J. M. (2004). Agent based genetic algorithm employing financial technical analysis for making trading decisions using historical equity market data. In IAT ’04: Proceedings of the intelligent agent technology, IEEE/WIC/ACM international conference (pp. 421–424). Washington, DC: IEEE Computer Society.

    Chapter  Google Scholar 

  • Shin, K. S., & Lee, Y. J. (2002). A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, 23(3), 321–328.

    Article  Google Scholar 

  • Simon, H. A. (1982). Models of bounded rationality (Vol. 2). Cambridge, MA: MIT Press.

    Google Scholar 

  • Streichert, F., Ulmer, H., & Zell, A. (2004). Evaluating a hybrid encoding and three crossover operators on the constrained portfolio selection problem. In Proceedings of the 2004 congress on evolutionary computation (pp. 932–939). New Jersey: IEEE Press.

    Google Scholar 

  • Tesfatsion, L. (2002). Agent-based computational economics: Growing economies from the bottom up. Artificial Life, 8, 55–82.

    Article  Google Scholar 

  • Tsang, E. P. K., & Martinez-Jaramillo, S. (2004). Computational finance. In IEEE computational intelligence society newsletter (pp. 3–8). New Jersey: IEEE Press.

    Google Scholar 

  • Tsang, E. P. K., Yung, P., & Li, J. (2004). Eddie-automation, a decision support tool for financial forecasting. Journal of Decision Support Systems, Special Issue on Data Mining for Financial Decision Making, 37(4), 559–565.

    Google Scholar 

  • Turku, B. B., Back, B., Laitinen, T., Sere, K., & Wezel, M. V. (1996). Choosing bankruptcy predictors using discriminant analysis, logit analysis, and genetic algorithms. In Proceedings of the first international meeting on artificial intelligence in accounting, finance and tax (pp. 337–356). Huelva: Spain.

    Google Scholar 

  • Yin, Z., Brabazon, A., & O’Sullivan, C. (2007). Adaptive genetic programming for option pricing. In GECCO ’07: Proceedings of the 2007 GECCO conference companion on genetic and evolutionary computation (pp. 2588–2594). New York: ACM.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Martínez-Jaramillo, S., García-Almanza, A., Alexandrova-Kabadjova, B., Centeno, T.P. (2011). Evolutionary Computation in Finance. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30164-8_274

Download citation

Publish with us

Policies and ethics