Skip to main content

Evolutionary Games

  • Reference work entry
Encyclopedia of Machine Learning
  • 188 Accesses

Definition

Evolutionary algorithms are a family of algorithms inspired by the workings of evolution by natural selection, whose basic structure is to

  1. 1.

    Produce an initial population of individuals, these latter being candidate solutions to the problem at hand

  2. 2.

    Evaluate the fitness of each individual in accordance with the problem whose solution is sought

  3. 3.

    While termination condition not met do

    1. a.

      Select fitter individuals for reproduction

    2. b.

      Recombine (crossover) individuals

    3. c.

      Mutate individuals

    4. d.

      Evaluate fitness of modified individuals

  4. 4.

    End while

Evolutionary games is the application of evolutionary algorithms to the evolution of game-playing strategies for various games, including chess, backgammon, and Robocode.

Motivation and Background

Ever since the dawn of artificial intelligence in the 1950s, games have been part and parcel of this lively field. In 1957, a year after the Dartmouth Conference that marked the official birth of AI, Alex Bernstein designed a program for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  • Azaria, Y., & Sipper, M. (2005a). GP-Gammon: Genetically programming backgammon players. Genetic Programming and Evolvable Machines, 6(3), 283–300.

    Article  Google Scholar 

  • Azaria, Y., & Sipper, M. (2005b). GP-Gammon: Using genetic programming to evolve backgammon players. In M. Keijzer, A. Tettamanzi, P. Collet, J. van Hemert, & M. Tomassini (Eds.), Proceedings of 8th European conference on genetic programming (EuroGP2005), LNCS (Vol. 3447, pp. 132–142). Heidelberg: Springer.

    Google Scholar 

  • Campbell, M. S., & Marsland, T. A. (1983). A comparison of minimax tree search algorithms. Artificial Intelligence, 20, 347–367.

    Article  MATH  Google Scholar 

  • Epstein, S. L. (1999). Game playing: The next moves. In Proceedings of the sixteenth National conference on artificial intelligence (pp. 987–993). Menlo Park, CA: AAAI Press.

    Google Scholar 

  • Hauptman, A., & Sipper, M. (2005a). Analyzing the intelligence of a genetically programmed chess player. In Late breaking papers at the 2005 genetic and evolutionary computation conference, GECCO 2005.

    Google Scholar 

  • Hauptman, A., & Sipper, M. (2005b). GP-EndChess: Using genetic programming to evolve chess endgame players. In M. Keijzer, A. Tettamanzi, P. Collet, J. van Hemert, & M. Tomassini (Eds.), Proceedings of 8th European conference on genetic programming (EuroGP2005), LNCS (Vol. 3447, pp. 120–131). Heidelberg: Springer.

    Google Scholar 

  • Hauptman, A., & Sipper, M. (2007a). Emergence of complex strategies in the evolution of chess endgame players. Advances in Complex Systems, 10 (Suppl. 1), 35–59.

    Article  MATH  Google Scholar 

  • Hauptman, A., & Sipper, M. (2007b). Evolution of an efficient search algorithm for the mate-in-N problem in chess. In M. Ebner, M. O’Neill, A. Ekárt, L. Vanneschi, & A. I. Esparcia-Alcázar (Eds.), Proceedings of 10th European conference on genetic programming (EuroGP2007), LNCS (Vol. 4445, pp. 78–89). Heidelberg: Springer.

    Google Scholar 

  • Hong, T.-P., Huang, K.-Y., & Lin, W.-Y. (2001). Adversarial search by evolutionary computation. Evolutionary Computation, 9(3), 371–385.

    Article  Google Scholar 

  • Kaindl, H. (1988). Minimaxing: Theory and practice. AI-Magazine, 9(3), 69–76.

    Google Scholar 

  • Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Laird, J. E., & van Lent, M. (2000). Human-level AI’s killer application: Interactive computer games. In AAAI-00: Proceedings of the 17th National conference on artificial intelligence (pp. 1171–1178). Cambridge, MA: MIT Press.

    Google Scholar 

  • Shannon, C. E. (1950). Automatic chess player. Scientific American, 48, 182.

    Google Scholar 

  • Shichel, Y., Ziserman, E., & Sipper, M. (2005). GP-Robocode: Using genetic programming to evolve robocode players. In M. Keijzer, A. Tettamanzi, P. Collet, J. van Hemert, & M. Tomassini (Eds.), Proceedings of 8th European conference on genetic programming (EuroGP2005), LNCS (Vol. 3447, pp. 143–154). Heidelberg: Springer.

    Google Scholar 

  • Sipper, M. (2002). Machine nature: The coming age of bio-inspired computing. New York: McGraw-Hill.

    Google Scholar 

  • Sipper, M., Azaria, Y., Hauptman, A., & Shichel, Y. (2007). Designing an evolutionary strategizing machine for game playing and beyond. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37(4), 583–593.

    Article  Google Scholar 

  • Tettamanzi, A., & Tomassini, M. (2001). Soft computing: Integrating evolutionary, neural, and fuzzy systems. Berlin: Springer.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Sipper, M. (2011). Evolutionary Games. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30164-8_282

Download citation

Publish with us

Policies and ethics