Skip to main content

Evolutionary Kernel Learning

  • Reference work entry
Encyclopedia of Machine Learning

Definition

Evolutionary kernel learning stands for using evolutionary algorithms to optimize the kernel function for a kernel-based learning machine.

Motivation and Background

In kernel-based learning algorithms the kernel function determines the scalar product and thereby the metric in the feature space in which the learning algorithm operates. The kernel is usually not adapted by the kernel method itself. Choosing the right kernel function is crucial for the training accuracy and generalization capabilities of the learning machine. It may also influence the runtime and storage complexity during learning and application.

Finding an appropriate kernel is a model selectionproblem. The kernel function is selected from an a priori fixed class. When a parameterized family of kernel functions is considered, kernel adaptation reduces to finding an appropriate parameter vector. In practice, the most frequently used method to determine these values is grid search. In simple grid search the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  • Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine Learning, 46(1), 131–159.

    Article  MATH  Google Scholar 

  • Eads, D. R., Hill, D., Davis, S., Perkins, S. J., Ma, J., Porter, R. B., et al. (2002). Genetic algorithms and support vector machines for time series classification. In B. Bosacchi, D. B. Fogel, & J. C. Bezdek (Eds.), Applications and science of neural networks, fuzzy systems, and evolutionary computation V , Proceedings of the SPIE (Vol. 4787) (pp. 74–85). SPIE–The International Society for Optical Engineering. Bellington, WA

    Google Scholar 

  • Friedrichs, F., & Igel, C. (2005). Evolutionary tuning of multiple SVM parameters. Neurocomputing, 64(C), 107–117.

    Google Scholar 

  • Fröhlich, H., Chapelle, O., & Schölkopf, B. (2004). Feature selection for support vector machines using genetic algorithms. International Journal on Artificial Intelligence Tools, 13(4), 791–800.

    Article  Google Scholar 

  • Glasmachers, T., & Igel, C. (2005). Gradient-based adaptation of general gaussian kernels. Neural Computation, 17(10),2099–2105.

    Article  MATH  MathSciNet  Google Scholar 

  • Howley, T., & Madden, M. (2005). The genetic kernel support vector machine: Description and evaluation. Artificial Intelligence Review, 24(3), 379–395.

    Article  Google Scholar 

  • Igel, C. (2005). Multi-objective model selection for support vector machines. In C. A. Coello Coello, E. Zitzler, & A. Hernandez Aguirre (Eds.), Proceedings of the third international conference on evolutionary multi-criterion optimization (EMO 2005), LNCS (Vol. 3410) (pp. 534–546). Berlin: Springer.

    Google Scholar 

  • Jong, K., Marchiori, E., & van der Vaart, A. (2004). Analysis of proteomic pattern data for cancer detection. In G. R. Raidl, S. Cagnoni, J. Branke, D. W. Corne, R. Drechsler, Y. Jin, et al. (Eds.), Applications of evolutionary computing, LNCS (Vol. 3005, pp. 41–51). Berlin: Springer.

    Google Scholar 

  • Mersch, B., Glasmachers, T., Meinicke, P., & Igel, C. (2007). Evolutionary optimization of sequence kernels for detection of bacterial gene starts. International Journal of Neural Systems, 17(5), 369–381.

    Article  Google Scholar 

  • Miller, M. T., Jerebko, A. K., Malley, J. D., & Summers, R. M. (2003). Feature selection for computer-aided polyp detection using genetic algorithms. In A. V. Clough & A. A. Amini (Eds.), Medical imaging 2003: Physiology and function: Methods, systems, and applications, Proceedings of the SPIE (Vol. 5031) (pp. 102–110).

    Google Scholar 

  • Pang, S., & Kasabov, N. (2004). Inductive vs. transductive inference, global vs. local models: SVM, TSVM, and SVMT for gene expression classification problems. In International joint conference on neural networks (IJCNN 2004) (Vol. 2, pp. 1197–1202). Washington, DC: IEEE Press.

    Google Scholar 

  • Runarsson, T. P., & Sigurdsson, S. (2004). Asynchronous parallel evolutionary model selection for support vector machines. Neural Information Processing – Letters and Reviews, 3(3), 59–68.

    Google Scholar 

  • Shi, S. Y. M., Suganthan, P. N., & Deb, K. (2004). Multi-class protein fold recognition using multi-objective evolutionary algorithms. In IEEE symposium on computational intelligence in bioinformatics and computational biology (pp. 61–66). Washington, DC: IEEE Press.

    Google Scholar 

  • Suttorp, T., & Igel, C. (2006). Multi-objective optimization of support vector machines. In Y. Jin (Ed.), Multi-objective machine learning. Studies in computational intelligence (Vol. 16, pp. 199–220). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Igel, C. (2011). Evolutionary Kernel Learning. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30164-8_284

Download citation

Publish with us

Policies and ethics