Skip to main content

Neuroevolution

  • Reference work entry
Encyclopedia of Machine Learning

Synonyms

Evolving neural networks; Genetic neural networks

Definition

Neuroevolution is a method for modifying neural network weights, topologies, or ensembles in order to learn a specific task. Evolutionary computation (see Evolutionary Algorithms) is used to search for network parameters that maximize a fitness function that measures performance in the task. Compared to other neural network learning methods, neuroevolution is highly general, allowing learning without explicit targets, with non differentiable activation functions, and with recurrent networks. It can also be combined with standard neural network learning, e.g. to biological adaptation. Neuroevolution can also be seen as a policy search method for reinforcement-learning problems, where it is well suited to continuous domains and to domains where the state is only partially observable.

Motivation and Background

The primary motivation for neuroevolution is to be able to train neural networks in sequential decision tasks...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  • Ackley, D., & Littman, M. (1992). Interactions between learning and evolution. In C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.), Artificial life II (pp. 487–509). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994). An evolutionary algorithm that constructs recurrent neural networks. IEEE Transactions on Neural Networks, 5, 54–65.

    Article  Google Scholar 

  • Bryant, B. D., & Miikkulainen, R. (2007). Acquiring visibly intelligent behavior with example-guided neuroevolution http://nn.cs.utexas.edu/keyword?bryant:aaai07. In Proceedings of the twenty-second national conference on artificial intelligence (pp. 801–808). Menlo Park, CA: AAAI Press.

  • Chellapilla, K., & Fogel, D. B. (1999). Evolution, neural networks, games, and intelligence. Proceedings of the IEEE, 87, 1471–1496.

    Article  Google Scholar 

  • Floreano, D.,  Dürr, P., & Mattiussi, C. (2008). Neuroevolution: From architectures to learning. Evolutionary Intelligence, 1, 47–62.

    Article  Google Scholar 

  • Gomez, F., & Miikkulainen, R. (2003). Active guidance for a finless rocket using neuroevolution http://nn.cs.utexas.edu/keyword?gomez:gecco03. In Proceedings of the genetic and evolutionary computation conference (pp. 2084–2095). San Francisco: Morgan Kaufmann.

  • Gomez, F., Schmidhuber, J., & Miikkulainen, R. (2008). Accelerated neural evolution through cooperatively coevolved syn-apses http://nn.cs.utexas.edu/keyword?gomez:jmlr08. Journal of Machine Learning Research, 9, 937–965.

  • Gruau, F., & Whitley, D. (1993). Adding learning to the cellular development of neural networks: Evolution and the Baldwin effect. Evolutionary Computation, 1, 213–233.

    Article  Google Scholar 

  • Igel, C. (2003). Neuroevolution for reinforcement learning using evolution strategies http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/igel/NfRLUES.pdf. In R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, & T. Gedeon, (Eds.), Proceedings of the 2003 congress on evolutionary computation (pp. 2588–2595). Piscataway, NJ: IEEE Press.

  • Keinan, A., Sandbank, B., Hilgetag, C. C., Meilijson, I., & Ruppin, E. (2006). Axiomatic scalable neurocontroller analysis via the Shapley value. Artificial Life, 12, 333–352.

    Article  Google Scholar 

  • Liu, Y., Yao, X., & Higuchi, T. (2000). Evolutionary ensembles with negative correlation learning. IEEE Transactions on Evolutionary Computation, 4, 380–387.

    Article  Google Scholar 

  • Miikkulainen, R., Bryant, B. D., Cornelius, R., Karpov, I. V., Stanley, K. O., & Yong, C. H. (2006). Compu-tational intelligence in games http://nn.cs.utexas.edu/keyword?miikkulainen:cigames06. In G. Y. Yen & D. B. Fogel (Eds.), Computational intelligence: Principles and practice (155–191). Piscataway, NJ: IEEE Computational Intelligence Society.

  • Moriarty, D. E., Schultz, A. C., & Grefenstette, J. J. (1999). Evolutionary algorithms for reinforcement learning. Journal of Artificial Intelligence Research, 11, 199–229.

    MathSciNet  Google Scholar 

  • Nolfi, S., & Floreano, D. (2000). Evolutionary robotics. Cambridge, MA: MIT Press.

    Google Scholar 

  • Potter, M. A., & Jong, K. A. D. (2000). Cooperative coevolution: An architecture for evolving coadapted subcomponents http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=10753229. Evolutionary Computation, 8, 1–29.

  • Schaffer, J. D., Whitley, D., & Eshelman, L. J. (1992). Combinations of genetic algorithms and neural networks: A survey of the state of the art. In D. Whitley & J. Schaffer (Eds.), Proceedings of the international workshop on combinations of genetic algorithms and neural networks (pp. 1–37). Los Alamitos, CA: IEEE Computer Society Press.

    Chapter  Google Scholar 

  • Stanley, K. O., & Miikkulainen, R. (2003). A taxonomy for artificial embryogeny http://nn.cs.utexas.edu/keyword?stanley:alife03. Artificial Life, 9, 93–130.

  • Stanley, K. O., & Miikkulainen, R. (2004). Competitive coevolution through evolutionary complexification http://nn.cs.utexas.edu/keyword?stanley:jair04. Journal of Artificial Intelligence Research, 21, 63–100.

  • Togelius, J., & Lucas, S. M. (2006). Evolving robust and specialized car racing skills http://algoval.essex.ac.uk/rep/games/Togelius2006Evolving.pdf. In IEEE congress on evolutionary computation (pp. 1187–1194). Piscataway, NJ: IEEE.

  • Werner, G. M., & Dyer, M. G. (1992). Evolution of communication in artificial organisms. In C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.) Proceedings of the workshop on artificial life (ALIFE ’90) (pp. 659–687). Reading, MA: Addison- Wesley.

    Google Scholar 

  • Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9), 1423–1447.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Miikkulainen, R. (2011). Neuroevolution. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30164-8_589

Download citation

Publish with us

Policies and ethics