Skip to main content

Phase Transitions in Machine Learning

  • Reference work entry
Encyclopedia of Machine Learning

Synonyms

Statistical Physics of learning; Threshold phenomena in learning; Typical complexity of learning

Definition

Phase transition (PT) is a term originally used in physics to denote the transformation of a system from a liquid, solid, or gas state (phase) to another. It is used, by extension, to describe any abrupt and sudden change in one of the order parameters describing an arbitrary system, when a control parameter approaches a critical value (While early studies on PTs in computer science inverted the notions of order and control parameters, this article will stick to the original definition used in Statistical Physics.).

Far from being limited to physical systems, PTs are ubiquitous in sciences, notably in computational science. Typically, hard combinatorial problems display a PT with regard to the probability of existence of a solution. Note that the notion of PT cannot be studied in relation to single-problem instances: it refers to emergent phenomena in an ensembleof...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  • Ales Bianchetti, J., Rouveirol, C., & Sebag, M. (2002). Constraint-based learning of long relational concepts. In C. Sammut (Ed.), Proceedings of international conference on machine learning, ICML’02, (pp. 35–42). San Francisco, CA: Morgan Kauffman.

    Google Scholar 

  • Alphonse, E., & Osmani, A. (2008). On the connection between the phase transition of the covering test and the learning success rate. Machine Learning, 70(2–3), 135–150.

    Article  Google Scholar 

  • Baskiotis, N., & Sebag, M. (2004). C4.5 competence map: A phase transition-inspired approach. In Proceedings of international conference on machine learning, Banff, Alberta, Canada (pp. 73–80). Morgan Kaufman.

    Google Scholar 

  • Botta, M., Giordana, A., & Saitta, L. (1999). An experimental study of phase transitions in matching. In Proceedings of the 16th international joint conference on artificial intelligence, Stockholm, Sweden (pp. 1198–1203).

    Google Scholar 

  • Botta, M., Giordana, A., Saitta, L., & Sebag, M. (2003). Relational learning as search in a critical region. Journal of Machine Learning Research, 4, 431–463.

    Article  MathSciNet  Google Scholar 

  • Cands, E. J. (2008). The restricted isometry property and its implications for compressed sensing. Compte Rendus de l’Academie des Sciences, Paris, Serie I, 346, 589–592.

    Google Scholar 

  • Cheeseman, P., Kanefsky, B., & Taylor, W. (1991). Where the really hard problems are. In R. Myopoulos & J. Reiter (Eds.), Proceedings of the 12th international joint conference on artificial intelligence, Sydney, Australia (pp. 331–340). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Cornuéjols, A., & Sebag, M. (2008). A note on phase transitions and computational pitfalls of learning from sequences. Journal of Intelligent Information Systems, 31(2), 177–189.

    Article  Google Scholar 

  • Cortes, C., & Vapnik, V. N. (1995). Support-vector networks. Machine Learning, 20, 273–297.

    MATH  Google Scholar 

  • De Raedt, L. (1997). Logical setting for concept-learning. Artificial Intelligence, 95, 187–202.

    Article  MathSciNet  MATH  Google Scholar 

  • De Raedt, L. (1998). Attribute-value learning versus inductive logic programming: The missing links. In Proceedings inductive logic programming, ILP, LNCS, (Vol. 2446, pp. 1–8). London: Springer.

    Google Scholar 

  • Demongeot, J., & Sené, S. (2008). Boundary conditions and phase transitions in neural networks. Simulation results. Neural Networks, 21(7), 962–970.

    Google Scholar 

  • Dietterich, T., Lathrop, R., & Lozano-Perez, T. (1997). Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1–2), 31–71.

    Article  MATH  Google Scholar 

  • Donoho, D. L., & Tanner, J. (2005). Sparse nonnegative solution of underdetermined linear equations by linear programming. Proceedings of the National Academy of Sciences, 102(27), 9446–9451.

    Article  MathSciNet  Google Scholar 

  • Engel, A., & Van den Broeck, C. (2001). Statistical mechanics of learning. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Gaudel, R., Sebag, M., & Cornuéjols, A. (2007). A phase transition-based perspective on multiple instance kernels. In Proceedings of international conference on inductive logic programming, ILP, Corvallis, OR (pp. 112–121).

    Google Scholar 

  • Gaudel, R., Sebag, M., & Cornuéjols, A. (2008). A phase transition-based perspective on multiple instance kernels. Lecture notes in computer sciences, (Vol. 4894, pp. 112–121).

    Google Scholar 

  • Giordana, A., & Saitta, L. (2000). Phase transitions in relational learning. Machine Learning, 41(2), 17–251.

    Article  Google Scholar 

  • Haussler, D. (1999). Convolutional kernels on discrete structures. Tech. Rep., Computer Science Department, University of California at Santa Cruz.

    Google Scholar 

  • Hogg, T., Huberman, B. A., & Williams, C. P. (Eds.). (1996). Artificial intelligence: Special Issue on frontiers in problem solving: Phase transitions and complexity, (Vol. 81(1–2)) . Elsevier.

    Google Scholar 

  • Kramer, S., Lavrac, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. In S. Dzeroski & N. Lavrac (Eds.), Relational data mining, (pp. 262–291). New York: Springer.

    Google Scholar 

  • Maloberti, J., & Sebag, M. (2004). Fast theta-subsumption with constraint satisfaction algorithms. Machine Learning Journal, 55, 137–174.

    Article  MATH  Google Scholar 

  • Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18, 203–226.

    Article  MathSciNet  Google Scholar 

  • Plotkin, G. (1970). A note on inductive generalization. In Machine Intelligence, (Vol. 5). Edinburgh University Press.

    Google Scholar 

  • Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Rückert, U., & De Raedt, L. (2008). An experimental evaluation of simplicity in rule learning. Artificial Intelligence, 172(1), 19–28.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Saitta, L., Sebag, M. (2011). Phase Transitions in Machine Learning. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30164-8_635

Download citation

Publish with us

Policies and ethics