Skip to main content

Radial Basis Function Networks

  • Reference work entry
Encyclopedia of Machine Learning

Synonyms

Networks with kernel functions; Radial basis function approximation; Radial basis function neural networks; Regularization networks

Definition

Radial basis function networks are a means of approximation by algorithms using linear combinations of translates of a rotationally invariant function, called the radial basis function. The coefficients of these approximations usually solve a minimization problem and can also be computed by interpolation processes. The radial basis functions constitute the so-called reproducing kernels on certain Hilbert-spaces or – in a slightly more general setting – semi-Hilbert spaces. In the latter case, the aforementioned approximation also contains an element from the nullspace of the semi-norm of the semi-Hilbert space. That is usually a polynomial space.

Motivation and Background

Radial basis function networks are a method to approximate functions and data by applying kernel methods to neural networks. More specifically, approximations of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  • Beatson, R. K., & Powell, M. J. D. (1994). An iterative method for thin plate spline interpolation that employs approximations to Lagrange functions. In D. F. Griffiths & G. A. Watson (Eds.), Numerical analysis 1993 (pp. 17–39). Burnt Mill: Longman.

    Google Scholar 

  • Broomhead, D., & Lowe, D. (1988). Radial basis functions, multi-variable functional interpolation and adaptive networks, Complex Systems, 2, 321–355.

    MATH  MathSciNet  Google Scholar 

  • Buhmann, M. D. (1990). Multivariate cardinal-interpolation with radial-basis functions. Constructive Approximation, 6, 225–255.

    Article  MATH  MathSciNet  Google Scholar 

  • Buhmann, M. D. (1998). Radial functions on compact support. Proceedings of the Edinburgh Mathematical Society, 41, 33–46.

    Article  MathSciNet  Google Scholar 

  • Buhmann, M. D. (2003). Radial basis functions: Theory and implementations. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Duchon, J. (1976). Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. RAIRO, 10, 5–12.

    MathSciNet  Google Scholar 

  • Evgeniou, T., Poggio, T., & Pontil, M. (2000). Regularization networks and support vector machines. Advances in Computational Mathematics, 13, 1–50.

    Article  MATH  MathSciNet  Google Scholar 

  • Hardy, R. L. (1990). Theory and applications of the multiquadric-biharmonic method. Computers and Mathematics with Applications, 19, 163–208.

    Article  MATH  MathSciNet  Google Scholar 

  • Micchelli, C. A. (1986). Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation, 1, 11–22.

    Article  MathSciNet  Google Scholar 

  • Pinkus, A. (1996). TDI-subpaces of C(ℝd) and some density problems from neural networks. Journal of Approximation Theory, 85, 269–287.

    Article  MATH  MathSciNet  Google Scholar 

  • Schoenberg, I. J. (1938). Metric spaces and completely monotone functions. Annals of Mathematics, 39, 811–841.

    Article  MathSciNet  Google Scholar 

  • Tichonov, A. N., & Arsenin, V. Y. (1977). Solution of ill-posed problems. Washington, DC: V.H. Winston.

    Google Scholar 

  • Vapnik, V. N. (1996). Statistical learning theory. New York: Wiley.

    Google Scholar 

  • Wahba, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter in the generalized splines smoothing problem. Annals of Statistics, 13, 1378–1402.

    Article  MATH  MathSciNet  Google Scholar 

  • Wahba, G. (1990). Spline models for observational data. Series in applied mathematics (Vol. 59). Philadelphia: SIAM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Buhmann, M.D. (2011). Radial Basis Function Networks. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30164-8_692

Download citation

Publish with us

Policies and ethics