Skip to main content

Recommender Systems

  • Reference work entry
Encyclopedia of Machine Learning

Definition

The goal of a recommender system is to generate meaningful recommendations to a collection of users for items or products that might interest them. Suggestions for books on Amazon, or movies on Netflix, are real-world examples of the operation of industry-strength recommender systems. The design of such recommendation engines depends on the domain and the particular characteristics of the data available. For example, movie watchers on Netflix frequently provide ratings on a scale of 1 (disliked) to 5 (liked). Such a data source records the quality of interactions between users and items. Additionally, the system may have access to user-specific and item-specific profile attributes such as demographics and product descriptions, respectively. Recommender systems differ in the way they analyze these data sources to develop notions of affinity between users and items, which can be used to identify well-matched pairs. Collaborative Filteringsystems analyze historical...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  • Good surveys of the literature in the field can be found in Adomavicius (2005); Su (2009); Bell et al. (2009). For extensive empirical comparisons on variations of Collaborative Filtering  refer to Breese  (1998), Herlocker  (1999), Sarwar et al. (2001).

    Google Scholar 

  • Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749.

    Article  Google Scholar 

  • Balabanovic, M., & Shoham, Y. (1997). Fab: Content-based, collaborative recommendation. Communications of the Association for Computing Machinery, 40(3), 66–72.

    Google Scholar 

  • Basu, C., Hirsh, H., & Cohen, W. (July 1998). Recommendation as classification: Using social and content-based information in recommendation. In Proceedings of the fifteenth national conference on artificial intelligence (AAAI-98), Madison, Wisconsin (pp. 714–720).

    Google Scholar 

  • Bell, R., Koren, Y., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. IEEE Computer 42(8): 30–37.

    Google Scholar 

  • Billsus, D., & Pazzani, M. J. (1998). Learning collaborative information filters. In Proceedings of the fifteenth international conference on machine learning (ICML-98), Madison, Wisconsin (pp. 46–54). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Breese, J. S., Heckerman, D., & Kadie, C. (July 1998). Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the fourteenth conference on uncertainty in artificial intelligence, Madison, Wisconsin.

    Google Scholar 

  • Burke, R., Mobasher, B., Bhaumik, R., & Williams, C. (2005). Segment-based injection attacks against collaborative filtering recommender systems. In ICDM ’05: Proceedings of the fifth IEEE international conference on data mining (pp. 577–580). Washington, DC: IEEE Computer Society. Houston, Texas.

    Chapter  Google Scholar 

  • Candès, E. J., & Tao, T. (2009). The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inform. Theory, 56(5), 2053–2080.

    Article  Google Scholar 

  • Claypool, M., Gokhale, A., & Miranda, T. (1999). Combining content-based and collaborative filters in an online newspaper. In Proceedings of the SIGIR-99 workshop on recommender systems: algorithms and evaluation.

    Google Scholar 

  • Cotter, P., & Smyth, B. (2000). PTV: Intelligent personalized TV guides. In Twelfth conference on innovative applications of artificial intelligence, Austin, Texas (pp. 957–964).

    Google Scholar 

  • Goldberg, D., Nichols, D., Oki, B., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the Association of Computing Machinery, 35(12), 61–70.

    Google Scholar 

  • Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B., Herlocker, J., et al. (July 1999). Combining collaborative filtering with personal agents for better recommendations. In Proceedings of the sixteenth national conference on artificial intelligence (AAAI-99), Orlando, Florida (pp. 439–446).

    Google Scholar 

  • Harpale, A. S., & Yang, Y. (2008). Personalized active learning for collaborative filtering. In SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval, Singapore (pp. 91–98). New York: ACM.

    Google Scholar 

  • Herlocker, J., Konstan, J., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. In Proceedings of 22nd international ACM SIGIR conference on research and development in information retrieval, Berkeley, California (pp. 230–237). New York: ACM.

    Google Scholar 

  • Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22(1), 5–53.

    Article  Google Scholar 

  • Hofmann, T. (1999). Probabilistic latent semantic analysis. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden, July 30-August 1, 1999 Morgan Kaufmann.

    Google Scholar 

  • Hofmann, T. (2004). Latent semantic analysis for collaborative filtering. ACM Transactions on Information Systems, 22(1), 89–115.

    Article  Google Scholar 

  • Jin, R., & Si, L. (2004). A Bayesian approach toward active learning for collaborative filtering. In UAI ’04: Proceedings of the 20th conference on uncertainty in artificial intelligence, Banff, Canada (pp. 278–285). Arlington: AUAI Press.

    Google Scholar 

  • Lam, S. K., & Riedl, J. (2004). Shilling recommender systems for fun and profit. In WWW ’04: Proceedings of the 13th international conference on World Wide Web, New York (pp. 393–402). New York: ACM.

    Google Scholar 

  • Lang, K. (1995). NewsWeeder: Learning to filter netnews. In Proceedings of the twelfth international conference on machine learning (ICML-95) (pp. 331–339). San Francisco. Tahoe City, CA, USA. Morgan Kaufmann, ISBN 1-55860-377-8.

    Google Scholar 

  • Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788.

    Article  Google Scholar 

  • Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76–80.

    Google Scholar 

  • Melville, P., Mooney, R. J., & Nagarajan, R. (2002). Content-boosted collaborative filtering for improved recommendations. In Proceedings of the eighteenth national conference on artificial intelligence (AAAI-02), Edmonton, Alberta (pp. 187–192).

    Google Scholar 

  • Mooney, R. J., & Roy, L. (June 2000). Content-based book recommending using learning for text categorization. In Proceedings of the fifth ACM conference on digital libraries, San Antonio, Texas (pp. 195–204).

    Google Scholar 

  • Nakamura, A., & Abe, N. (1998). Collaborative filtering using weighted majority prediction algorithms. In ICML ’98: Proceedings of the fifteenth international conference on machine learning (pp. 395–403). San Francisco: Morgan Kaufmann. Madison, Wisconsin.

    Google Scholar 

  • Pan, R., & Scholz, M. (2009). Mind the gaps: Weighting the unknown in large-scale one-class collaborative filtering. In 15th ACM SIGKDD conference on knowledge discovery and data mining (KDD), Paris, France.

    Google Scholar 

  • Pazzani, M. J. (1999). A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13 (5–6), 393–408.

    Article  Google Scholar 

  • Pazzani, M. J., & Billsus, D. (1997). Learning and revising user profiles: The identification of interesting web sites. Machine Learning, 27(3), 313–331.

    Article  Google Scholar 

  • Popescul, A., Ungar, L., Pennock, D. M., & Lawrence, S. (2001). Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments. In Proceedings of the seventeenth conference on uncertainity in artificial intelligence. University of Washington, Seattle.

    Google Scholar 

  • Recht, B. (2009). A Simpler Approach to Matrix Completion. Benjamin Recht. (to appear in Journal of Machine Learning Research).

    Google Scholar 

  • Rennie, J., & Srebro, N. (2005). Fast maximum margin matrix factorization for collaborative prediction. In International conference on machine learning, Bonn, Germany.

    Google Scholar 

  • Resnick, P., Iacovou, N., Sushak, M., Bergstrom, P., & Reidl, J. (1994a). GroupLens: An open architecture for collaborative filtering of netnews. In Proceedings of the 1994 computer supported cooperative work conference, New York. New York: ACM.

    Google Scholar 

  • Resnick, P., Neophytos, I., Bergstrom, P., Mitesh, S., & Riedl, J. (1994b). Grouplens: An open architecture for collaborative filtering of netnews. In CSCW94 – Conference on computer supported cooperative work, Chapel Hill (pp. 175–186). Addison-Wesley.

    Google Scholar 

  • Sarwar, B., Karypis, G., Konstan, J., & Reidl, J. (2001). Item-based collaborative filtering recommendation algorithms. In WWW ’01: Proceedings of the tenth international conference on World Wide Web (pp. 285–295). New York: ACM. Hong Kong.

    Chapter  Google Scholar 

  • Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and metrics for cold-start recommendations. In SIGIR ’02: Proceedings of the 25th annual international ACM SIGIR conference on research and development in information retrieval (pp. 253–260). New York: ACM. Tampere, Finland.

    Chapter  Google Scholar 

  • Soboroff, I., & Nicholas, C. (1999). Combining content and collaboration in text filtering. In T. Joachims (Ed.), Proceedings of the IJCAI’99 workshop on machine learning in information filtering (pp. 86–91).

    Google Scholar 

  • Srebro, N., & Jaakkola, T. (2003). Weighted low-rank approximations. In International conference on machine learning (ICML). Washington DC.

    Google Scholar 

  • Su, X., Greiner, R., Khoshgoftaar, T. M., & Zhu, X. (2007). Hybrid collaborative filtering algorithms using a mixture of experts. In Web intelligence (pp. 645–649).

    Google Scholar 

  • Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009, 1–20.

    Article  MATH  Google Scholar 

  • Su, X., Khoshgoftaar, T. M., Zhu, X., & Greiner, R. (2008). Imputation-boosted collaborative filtering using machine learning classifiers. In SAC ’08: Proceedings of the 2008 ACM symposium on applied computing (pp. 949–950). New York: ACM.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Melville, P., Sindhwani, V. (2011). Recommender Systems. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30164-8_705

Download citation

Publish with us

Policies and ethics