Skip to main content

Definition of the Subject

Cluster concepts have been extremely useful in elucidating many problems in physics. Percolation theory provides a generic framework to studythe behavior of the cluster distribution. In most cases the theory predicts a geometrical transition at the percolation threshold, characterized inthe percolative phase by the presence of a spanning cluster, which becomes infinite in the thermodynamic limit. Standard percolation usually dealswith the problem when the constitutive elements of the clusters are randomly distributed. However correlations cannot always be neglected. In this casecorrelated percolation is the appropriate theory to study such systems. The origin of correlated percolation could be dated back to 1937 whenMayer [76] proposed a theory to describe the condensation from a gas to a liquid interms of mathematical clusters (for a review of cluster theory in simple fluids see [88]). Thelocation for the divergence of the size of these clusters was...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Ising Hamiltonian, Eq. (30), is equivalent to the lattice gas Hamiltonian \( {\mathcal H}_{{\text{LG}}} = - J^{\prime} \sum_{\langle ij\rangle} n_i n_j -\mu \sum_i n_i \), with \( n_i=(1-S_i)/2, J^{\prime}=4J \) and \( { \mu=2H-4J } \). In the lattice gas terminology an Ising cluster is a maximal set of nn occupied sites.

  2. 2.

    Originally in [30] the Hamiltonian of the DIPM, \( { \mathcal{H}_{\text{DP}} } \), was expressed in terms of the lattice gas variables n i , and the Ising droplets were defined as nn occupied sites connected by bonds, corresponding to nn down spins.

Bibliography

Primary Literature

  1. Abete T, de Candia A, Lairez D, Coniglio A (2004) Phys Rev Lett 93:228301

    ADS  Google Scholar 

  2. Aharony A, Gefen Y, Kapitulnik A (1984) J Phys A 17:l197; Alexander S, Grest GS, Makanishi H, Witten TA (1984) J Phys A 17:L185

    Google Scholar 

  3. Aizenman M (1997) Nucl Phys B 485:551

    MathSciNet  ADS  Google Scholar 

  4. Amitrano C, di Liberto F, Figari R, Peruggi F (1983) J Phys A Math Gen 16:3925

    ADS  Google Scholar 

  5. Anghel M, Tobochnik J, Klein W, Gould H, Alexander FJ, Johnson G (2000) Phys Rev Lett 85:1270; Padoa SC, Sciortino F, Tartaglia P (1998) Phys Rev E 57:3797; Neerman DW, Coniglio A, Klein W, Stauffer D (1984) J Stat Phys 36:477

    Google Scholar 

  6. Bastiaansen PJM, Knops HJF (1997) J Phys A Math Gen 30:1791

    MathSciNet  ADS  Google Scholar 

  7. Bialas P, Blanchard P, Fortunato S, Gandolfo D, Satz H (2000) Nucl Phys B 583:368; Blanchard P, Digal S, Fortunato S, Gandolfo D, Mendes T, Satz H (2000) J Phys A Math Gen 33:8603

    Google Scholar 

  8. Binder K (1976) Ann Phys NY 98:390

    ADS  Google Scholar 

  9. Birgeneau RJ, Cowley RA, Shirane G, Guggenheim HJ (1976) Phys Rev Lett 37:940; Birgeneau RJ, Cowley RA, Shirane G, Guggenheim HJ (1980) Phys Rev B 21:317

    Google Scholar 

  10. Blote HWJ, Knops YMM, Nienhuis B (1992) Phys Rev Lett 68:3440

    ADS  Google Scholar 

  11. Broderix K, Löwe H, Müller P, Zippelius A (2001) Phys Rev E 63:011510

    Google Scholar 

  12. Bug ALR, Safran SA, Grest GS, Webman I (1985) Phys Rev Lett 55:1896; Safran SA, Webman I, Grest GS (1985) Phys Rev A 32:506

    Google Scholar 

  13. Bunde A, Havlin S (1991) Percolation I. In: Bunde A, Havlin S (eds) Fractals and disordered systems. Springer, New York, pp 51–95

    Google Scholar 

  14. Campbell AI, Anderson VJ, van Duijneveldt JS, Bartlett P (2005) Phys Rev Lett 94:208301

    ADS  Google Scholar 

  15. Campi X, Krivine H (2005) Phys Rev C 72:057602; Krivine H, Campi X, Sator N (2003) Phys Rev C 67:044610; Mader CM, Chappars A, Elliott JB, Moretto LG,, Phair L, Wozniak GJ (2003) Phys Rev C 68:064601

    Google Scholar 

  16. Campi X, Krivine H, Puente A (1999) Physica A 262:328

    Google Scholar 

  17. Campi X, Krivine H, Sator N (2001) Physica A 296:24

    ADS  Google Scholar 

  18. Chayes JT, Chayes L, Grimmet GR, Kesten H, Schonmann R (1989) Ann Probab 17:1277

    MathSciNet  Google Scholar 

  19. Chayes L, Coniglio A, Machta J, Shtengel K (1999) J Stat Phys 94:53

    MathSciNet  ADS  Google Scholar 

  20. Chen SH, Rouch J, Sciortino F, Tartaglia P (1994) J Phys Cond Matter 6:10855

    ADS  Google Scholar 

  21. Coniglio A (1975) J Phys A 8:1773

    ADS  Google Scholar 

  22. Coniglio A (1976) Phys Rev B 13:2194

    ADS  Google Scholar 

  23. Coniglio A (1981) Phys Rev Lett 46:250

    ADS  Google Scholar 

  24. Coniglio A (1982) J Phys A 15:3829

    MathSciNet  ADS  Google Scholar 

  25. Coniglio A (1983) In: Proceedings of Erice school on ferromagnetic transitions. Springer, New York

    Google Scholar 

  26. Coniglio A (1985) Finely divided matter. In: Boccara N, Daoud M (eds) Proc. les Houches Winter conference. Springer, New York

    Google Scholar 

  27. Coniglio A (1989) Phys Rev Lett 62:3054

    MathSciNet  ADS  Google Scholar 

  28. Coniglio A (1990) In: Stanley HE, Ostrowsky W (eds) Correlation and connectivity – Geometric aspects of physics, chemistry and biology, vol 188. NATO ASI series. Kluwer, Dordrecht

    Google Scholar 

  29. Coniglio A, Figari R (1983) J Phys A Math Gen 16:L535

    ADS  Google Scholar 

  30. Coniglio A, Klein W (1980) J Phys A 13:2775

    ADS  Google Scholar 

  31. Coniglio A, Lubensky T (1980) J Phys A 13:1783

    ADS  Google Scholar 

  32. Coniglio A, Peruggi F (1982) J Phys A 15:1873

    ADS  Google Scholar 

  33. Coniglio A, Stanley HE (1984) Phys Rev Lett 52:1068

    ADS  Google Scholar 

  34. Coniglio A, Stauffer D (1980) Lett Nuovo Cimento 28:33

    Google Scholar 

  35. Coniglio A, Zia RVP (1982) J Phys A Math Gen 15:L399

    MathSciNet  ADS  Google Scholar 

  36. Coniglio A, Nappi C, Russo L, Peruggi F (1976) Comm Math Phys 51:315

    MathSciNet  ADS  Google Scholar 

  37. Coniglio A, Nappi C, Russo L, Peruggi F (1977) J Phys A 10:205

    MathSciNet  ADS  Google Scholar 

  38. Coniglio A, De Angelis U, Forlani A, Lauro G (1977) J Phys A Math Gen 10:219; Coniglio A, De Angelis U, Forlani A (1977) J Phys A Math Gen 10:1123

    Google Scholar 

  39. Coniglio A, Stanley HE, Klein W (1979) Phys Rev Lett 42:518; Coniglio A, Stanley HE, Klein W (1982) Phys Rev B 25:6805

    Google Scholar 

  40. Coniglio A, di Liberto F, Monroy G, Peruggi F (1989) J Phys A 22:L837

    ADS  Google Scholar 

  41. Coniglio A, Abete T, de Candia A, del Gado E, Fierro A (2007) J Phys Condens Matter 19:205103; de Candia A, del Gado E, Fierro A, Sator N, Coniglio A (2005) Phys A 358:239; Coniglio A, de Arcangelis L, del Gado E, Fierro A, Sator N (2004) J Phys Condens Matter 16:S4831; Gimel JC, Nicolai T, Durand D (2001) Eur Phys J E 5:415

    Google Scholar 

  42. de Arcangelis L (1987) J Phys A 20:3057

    ADS  Google Scholar 

  43. de Gennes PG (1975) J Phys Paris 36:1049; de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  44. de Gennes PG (1976) La Recherche 7:919

    Google Scholar 

  45. del Gado E, de Arcangelis L, Coniglio A (2000) Eur Phys J E 2:359

    Google Scholar 

  46. del Gado E, Fierro A, de Arcangelis L, Coniglio A (2004) Phys Rev E 69:051103

    ADS  Google Scholar 

  47. Dhar D (1999) Physica A 263:4

    ADS  Google Scholar 

  48. Dunn AG, Essam JW, Ritchie DS (1975) J Phys C 8:4219; Cox MAA, Essam JW (1976) J Phys C 9:3985

    Google Scholar 

  49. Essam JW (1980) Rep Prog Phys 43:833

    MathSciNet  ADS  Google Scholar 

  50. Fisher ME (1967) Physics NY 3:225; Fisher ME (1967) J Appl Phys 38:981; Fisher ME, Widom B (1969) J Chem Phys 50:3756; Fisher ME (1971) In: Green MS (ed) Critical Phenomena. Proc. of the international school of physics “Enrico Fermi” course LI, Varenna on lake Como (Italy). Academic, New York, p 1

    Google Scholar 

  51. Flory PJ (1941) J Am Chem Soc 63:3083; Flory PJ (1979) Principles of polymer chemistry. Cornell University Press. Ithaca

    Google Scholar 

  52. Fortunato S, Satz H (2000) Nucl Phys B Proc Suppl 83:452

    ADS  Google Scholar 

  53. Fortunato S, Aharony A, Coniglio C, Stauffer D (2004) Phys Rev E 70:056116

    ADS  Google Scholar 

  54. Frenkel J (1939) J Chem Phys 7:200; Frenkel J (1939) J Chem Phys 7:538

    Google Scholar 

  55. Gefen Y, Aharony A, Mandelbrot BB, Kirkpatrick S (1981) Phys Rev Lett 47:1771

    MathSciNet  ADS  Google Scholar 

  56. Given JA, Stell G (1991) J Phys A Math Gen 24:3369

    ADS  Google Scholar 

  57. Harris AB, Lubensky TC, Holcomb W, Dasgupta C (1975) Phys Rev Lett 35:327

    ADS  Google Scholar 

  58. Havlin S, Bunde A (1991) Percolation II. In: Bunde A, Havlin S (eds) Fractals and disordered systems. Springer, New York, pp 97–149

    Google Scholar 

  59. Heermann DW, Stauffer D (1981) Z Phys B 44:339

    ADS  Google Scholar 

  60. Hill TL (1955) J Chem Phys 23: 617

    Google Scholar 

  61. Hong DC, Stanley HE, Coniglio A, Bunde A (1986) Phys Rev B 33:4564

    ADS  Google Scholar 

  62. Hu CK (1984) Phys Rev B 29:5103; Hu CK (1992) Phys Rev Lett 69:2739; Hu CK, Mak KS (1989) Phys Rev B 40:5007

    Google Scholar 

  63. Hu CK, Lin CY (1996) Phys Rev Lett 77:8

    ADS  Google Scholar 

  64. Jan N, Coniglio A, Stauffer D (1982) J Phys A 15:L699

    ADS  Google Scholar 

  65. Kasteleyn PW, Fortuin CM (1969) J Phys Soc Japan Suppl 26:11; Fortuin CM, Kasteleyn PW (1972) Phys Utrecht 57:536

    Google Scholar 

  66. Kertesz J (1989) Physica A 161:58

    ADS  Google Scholar 

  67. Kertesz J, Coniglio A, Stauffer D (1983) Clusters for random and interacting percolation. In: Deutscher G, Zallen R, Adler J (eds) Percolation structures and processes, Annals of the Israel Physical Society 5. Adam Hilger, Bristol, pp 121–147. The Israel Physical Society, Jerusalem

    Google Scholar 

  68. Kirkpatrick S (1978) AIP Conference Proc. 40:99

    Google Scholar 

  69. Ma YG (1999) Phys Rev Lett 83:3617; Ma YG, Han DD, Shen WQ, Cai XZ, Chen JG, He ZJ Long JL, Ma GL, Wang K, Wei YB, Yu LP, Zhang HY, Zhong C, Zhou XF, Zhu ZY (2004) J Phys G Nucl Part Phys 30:13

    Google Scholar 

  70. Makse HA, Havlin S, Stanley HE (1995) Nature 377:608; Makse HA, Andrade JS Jr, Batty M, Havlin S, Stanley HE (1998) Phys Rev E 58:7054

    Google Scholar 

  71. Mallamace F, Chen SH, Liu Y, Lobry L, Micali N (1999) Physica A 266:123

    Google Scholar 

  72. Mallamace F, Gambadauro P, Micali N, Tartaglia P, Liao C, Chen SH (2000) Phys Rev Lett 57:5431

    ADS  Google Scholar 

  73. Mallamace F, Chen SH, Coniglio A, de Arcangelis L, del Gado E, Fierro A (2006) Phys Rev E 73:020402

    ADS  Google Scholar 

  74. Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

  75. Martin JE, Douglas A, Wilcoxon JP (1988) Phys Rev Lett 61:262

    ADS  Google Scholar 

  76. Mayer JE (1937) J Chem Phys 5:67; Mayer JE, Ackermann PG (1937) J Chem Phys 5:74; Mayer JE, Harrison SF (1938) J Chem Phys 6:87; Mayer JE, Mayer MG (1940) Statistical mechanics. Wiley, New York

    Google Scholar 

  77. Monroy G, Coniglio A, di Liberto F, Peruggi F (1991) Phys Rev B 44:12605; Coniglio A (2000) Physica A 281:129

    Google Scholar 

  78. Muller-Krhumbaar H (1974) Phys Lett A 50:27

    ADS  Google Scholar 

  79. Murata KK (1979) J Phys A 12: 81

    ADS  Google Scholar 

  80. Newman CM, Machta J, Stein DL (2007) J Stat Phys 130:113

    MathSciNet  Google Scholar 

  81. Nienhuis B, Berker AN, Riedel EK, Shick M (1979) Phys Rev Lett 43:737

    ADS  Google Scholar 

  82. Odagaki T, Ogita N, Matsuda H (1975) J Phys Soc Japan 39:618

    ADS  Google Scholar 

  83. Pike R, Stanley HE (1981) J Phys A 14:L169

    ADS  Google Scholar 

  84. Romano F, Tartaglia P, Sciortino F (2007) J Phys Condens Matter 19:322101; Zaccarelli E (2007) J Phys Condens Matter 19:323101

    Google Scholar 

  85. Roussenq J, Coniglio A, Stauffer D (1982) J Phys Paris 43:L703

    Google Scholar 

  86. Saika-Voivod I, Zaccarelli E, Sciortino F, Buldyrev SV, Tartaglia P (2004) Phys Rev E 70:041401

    ADS  Google Scholar 

  87. Saleur H, Duplantier B (1987) Phys Rev Lett 58:2325; Duplantier B, Saleur H (1989) Phys Rev Lett 63:2536

    Google Scholar 

  88. Sator N (2003) Physics Reports 376:1

    MathSciNet  ADS  Google Scholar 

  89. Skal AS, Shklovskii BI (1975) Sov Phys Semicond 8:1029

    Google Scholar 

  90. Stanley HE (1977) J Phys A 10:1211

    Google Scholar 

  91. Stauffer D (1976) J Chem Soc Faraday Trans 72:1354

    Google Scholar 

  92. Stauffer D (1981) J Phys Lett 42:L49

    Google Scholar 

  93. Stauffer D (1990) Physica A 168:614

    MathSciNet  ADS  Google Scholar 

  94. Stauffer D (1997) Physica A 242:1. for a minireview on the multiplicity of the infinite clusters

    Google Scholar 

  95. Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, London

    Google Scholar 

  96. Stauffer D, Coniglio A, Adam M (1982) Adv Pol Sci 44:103. For a review on percolation and gelation (special volume Polymer Networks, ed. Dusek K)

    Google Scholar 

  97. Stella AL, Vanderzande C (1989) Phys Rev Lett 62:1067

    MathSciNet  ADS  Google Scholar 

  98. Suzuki M (1974) Progr Theor Phys Kyoto 51:1992

    ADS  Google Scholar 

  99. Swendsen RH, Wang JS (1987) Phys Rev Lett 58:86

    ADS  Google Scholar 

  100. Sykes MF, Gaunt DS (1976) J Phys A 9:2131

    ADS  Google Scholar 

  101. Tanaka T, Swislow G, Ohmine I (1979) Phys Rev Lett 42:1557

    ADS  Google Scholar 

  102. Temesvary T (1984) J Phys A Math Gen 17:1703; Janke W, Schakel AMJ (2004) Nucl Phys B 700:385; Qian X, Deng Y, Blote HWJ (2005) Phys Rev E 72:056132; Deng Y, Guo W, Blote HWJ (2005) Phys Rev E 72:016101; Balog I, Uzelac K (2007) Phys Rev E 76:011103

    Google Scholar 

  103. Vernon DC, Plischke M, Joos B (2001) Phys Rev E 64:031505

    ADS  Google Scholar 

  104. Wang JS (1981) Physica A 161:249

    ADS  Google Scholar 

  105. Wang JS (1989) Physica A 161:249

    ADS  Google Scholar 

  106. Wang JS, Swendsen R (1990) Physica A 167:565

    MathSciNet  ADS  Google Scholar 

  107. Webman I, Safran S, Bug ALR (1986) Phys Rev A 33:2842

    ADS  Google Scholar 

  108. Weinrib A (1984) Phys Rev B 29:387; Weinrib A, Halperin BI (1983) Phys Rev B 27:413; Sahimi M, Knackstedt MA, Sheppard AP (2000) Phys Rev E 61:4920; Sahimi M, Mukhopadhyay (1996) Phys Rev E 54:3870; Makse HA, Havlin S, Schwartz M, Stanley HE (1996) Phys Rev E 53:5445

    Google Scholar 

  109. Wolff U (1988) Phys Rev Lett 60:1461; Wolff U (1989) Phys Lett B 228:379; Wolff U (1989) Phys Rev Lett 62:361

    Google Scholar 

  110. Wu F (1982) Rev Mod Phys 54:235

    ADS  Google Scholar 

Books and Reviews

  1. Grimmett G (1989) Percolation. Springer, Berlin

    Google Scholar 

  2. Sahimi M (1994) Application of percolation theory. Taylor and Francis, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix: Random Cluster Model and Ising Droplets

Appendix: Random Cluster Model and Ising Droplets

In 1969 Kasteleyn and Fortuin (KF) [65] introduced a correlated bond percolation model, called the random cluster model, and showed that the partition function of this percolation model was identical to the partition function of the q‑state Potts model. They also showed that the thermal quantities in the Potts model could be expressed in terms of connectivity properties of the random cluster model. Much later in 1980 Coniglio and Klein [30] independently have used a different approach with the aim to define the proper droplets in the Ising model. It was only later that it was realized that the two approaches were related, although the meaning of the clusters in the two approaches is different. We will discuss these two approaches here, and show that their statistical properties are the same.

Random Cluster Model

Let us consider an Ising system of spins \( { S_{i}={\pm} 1 } \) on a lattice with nearest‐neighbor interactions and, when needed, let us assume periodic boundary conditions in both directions. All interactions have strength J and the Hamiltonian is

$$ \mathcal{H}(\{S_{i}\})=-\sum_{\langle i,j \rangle}J(S_{i}S_{j}-1)\: , $$
(54)

where \( { \{S_{i}\} } \) represents a spin configuration and the sum is over nn spins. The main point in the KF approach is to replace the original Ising Hamiltonian with an annealed diluted Hamiltonian

$$ \mathcal{H}^{\prime} (\{S_{i}\})=-\sum_{\langle i,j \rangle}J_{ij}^{\prime}(S_{i}S_{j}-1)\: , $$
(55)

where

$$ J_{ij}^{\prime}= \begin{cases} J^{\prime} & \text{with probability}\: p \\ 0 & \text{with probability}\: (1-p)\:. \end{cases} $$
(56)

The parameter p is chosen such that the Boltzmann factor associated with an Ising configuration of the original model coincides with the weight associated with a spin configuration of the diluted Ising model

$$ \begin{aligned} \text{e}^{-\beta \mathcal{H}(\{S_i\})}& \equiv \prod_{\langle i,j \rangle} \text{e}^{\beta J(S_iS_j-1)}\\ &= \prod_{\langle i,j \rangle}\left(p\text{e}^{\beta J^{\prime}(S_iS_j-1)}+(1-p)\right) \: , \end{aligned} $$
(57)

where \( { \beta=1/k_\text{B}T } \), \( { k_\text{B} } \) is the Boltzmann constant and T is the temperature. In order to satisfy (57) we must have

$$ \text{e}^{\beta J(S_iS_j-1)}=p\text{e}^{\beta J^{\prime}(S_iS_j-1)}+(1-p)\:. $$
(58)

We take now the limit \( { J^{\prime}\mapsto\infty } \). In such a case \( { \text{e}^{\beta J^{\prime}(S_iS_j-1)} } \) equals the Kronecker delta \( { \delta_{S_iS_j} } \) and from (58) p is given by

$$ p=1-\text{e}^{-2\beta J}\:. $$
(59)

From (57), by performing the products we can write

$$ \text{e}^{-\beta \mathcal{H}(\{S_i\})} = \sum_C W_{{\text{KF}}}(\{S_i\},C)\: , $$
(60)

where

$$ W_{{\text{KF}}}(\{S_i\},C)=p^{|C|}(1-p)^{|A|}\prod_{\langle i,j \rangle\in C}\delta_{S_iS_j}\:. $$
(61)

Here C is a configuration of interactions where \( { |C| } \) is the number of interactions of strength \( { J^{\prime}=\infty } \) and \( { |A| } \) the number of interactions of strength 0. \( { |C|+|A|=|E| } \), where \( { |E| } \) is the total number of edges in the lattice.

\( { W_{{\text{KF}}}(\{S_i\},C) } \) is the statistical weight associated a) with a spin configuration \( { \{S_i\} } \) and b) with a set of interactions in the diluted model where \( { |C| } \) edges have ∞ strength interactions, while all the other edges have 0 strength interactions. The Kronecker delta indicates that two spins connected by an ∞ strength interaction must be in the same state. Therefore the configuration C can be decomposed in clusters of parallel spins connected by infinite strength interactions.

Finally the partition function of the Ising model Z is obtained by summing the Boltzmann factor (60) over all the spin configurations. Since each cluster in the configuration C gives a contribution of 2, we obtain:

$$ Z = \sum_C p^{|C|}(1-p)^{|A|} 2^{N_C}\: , $$
(62)

where N C is the number of clusters in the configuration C.

In conclusion, in the KF formalism the partition function (62) is equivalent to the partition function of a correlated bond percolation model [62,65] where the weight of each bond configuration C is given by

$$ W(C) = \sum_{\{ S_i\}}W_{{\text{KF}}}(\{S_i\},C) = p^{|C|}(1-p)^{|A|} 2^{N_C} $$
(63)

which coincides with the weight of the random percolation except for the extra factor \( { 2^{N_C} } \). Clearly all percolation quantities in this correlated bond model are weighted according to Eq. (63) coincide with the corresponding percolation quantities of the KF clusters made of parallel spins connected by an ∞ strength interaction, whose statistical weight is given by (61). Moreover using (61) and (60) Kasteleyn and Fortuin have proved that [65]

$$ | \langle S_i \rangle | = \langle \gamma_i^{\infty}\rangle_{W} $$
(64)

and

$$ \langle S_iS_j\rangle=\langle\gamma_{ij}\rangle_{W} \: , $$
(65)

where \( { \langle \dots \rangle } \) is the Boltzmann average and \( { \langle \dots\rangle _{W} } \) is the average over bond configurations in the bond correlated percolation with weights given by (63). Here \( { \gamma_i^{\infty}(C) } \) is equal to 1 if the spin at site i belongs to the spanning cluster, 0 otherwise; \( { \gamma_{ij}(C) } \) is equal to 1 if the spins at sites i and j belong to the same cluster, 0 otherwise.

Connection Between the Ising Droplets and the Random Cluster Model

In the approach followed by Coniglio and Klein [30], given a configuration of spins, one introduces at random connecting bonds between nn parallel spins with probability \( { p_{\text{b}} } \), antiparallel spins are not connected with probability 1. Clusters are defined as maximal sets of parallel spins connected by bonds. The bonds here are fictitious, they are introduced only to define the clusters and do not modify the interaction energy as in the FK approach. For a given realization of bonds we distinguish the subsets C and B of nn parallel spins respectively connected and not connected by bonds and the subset D of nn antiparallel spins. The union of C, B and D coincides with the total set of nn pair of spins E. The statistical weight of a configuration of spins and bonds is [28,40]

$$ W_{{\text{CK}}}(\{S_i\},C) = p_{\text{b}}^{\mid C\mid}(1-p_{\text{b}})^{\mid B\mid}\text{e}^{-\beta\mathcal{H} (\{S_i\})}\: , $$
(66)

where \( { |C| } \) and \( { |B| } \) are the number of nn pairs of parallel spins respectively in the subset C and B not connected by bonds.

For a given spin configuration, using the Newton binomial rule, we have the following sum rule

$$ \sum_{C} p_{\text{b}}^{\mid C\mid}(1-p_{\text{b}})^{\mid B\mid}=1\:. $$
(67)

From Eq. (67) follows that the Ising partition function, Z, may be obtained by summing (66) over all bond configurations and then over all spin configurations.

$$ Z=\sum_{\{S_i\}}\sum_C W_{{\text{CK}}}(\{S_i\},C) = \sum_{\{S_i\}} \text{e}^{-\beta\mathcal{H}(\{S_i\})}\:. $$
(68)

The partition function of course does not depend on the value of \( { p_{\text{b}} } \) which controls the bond density. By tuning \( { p_{\text{b}} } \) instead it is possible to tune the size of the clusters. For example by taking \( { p_{\text{b}}=1 } \) the clusters would coincide with nearest‐neighbor parallel spins, while for \( { p_{\text{b}}=0 } \) the clusters are reduced to single spins. By choosing the droplet bond probability \( { p_{\text{b}}=1-\text{e}^{-2\beta J}\equiv p } \) and observing that \( { \text{e}^{-\beta\mathcal{H}(\{S_i\})}=\text{e}^{-2\beta J|D|} } \), where \( { |D| } \) is the number of antiparallel pairs of spins, the weight (66) simplifies and becomes:

$$ W_{{\text{CK}}}(\{S_i\},C) = p^{\mid C\mid}(1-p)^{\mid A\mid}\: , $$
(69)

where \( { |A|=|B|+|D|=|E|-|C| } \).

From (69) we can calculate the weight W(C) that a given configuration of connecting bonds C between nn parallel spins occurs. This configuration C can occur in many spin configurations. So we have to sum over all spin configurations compatible with the bond configuration C, namely

$$ W(C)=\sum_{\{S_{i}\}}W_{{\text{CK}}}(\{S_{i}\},C)\prod_{\langle i,j \rangle \in C}\delta_{S_{i}S_{j}}\: , $$
(70)

where, due to the product of the Kronecker delta, the sum is over all spin configurations compatible with the bond configuration C. From (59) and (70) we have

$$ \begin{aligned} W(C) &=\sum_{\{S_{i}\}}p^{\mid C\mid} (1-p)^{\mid A\mid}\prod_{\langle i,j \rangle \in C}\delta_{S_{i}S_{j}}\\ &=p^{|C|}(1-p)^{|A|}2^{N_{C}}\:. \end{aligned} $$
(71)

Consequently in (68) by taking first the sum over all spins compatible with the configuration C, the partition function Z can be written as in the KF formalism (62).

$$ Z = \sum_C p^{|C|}(1-p)^{|A|} 2^{N_C}\:. $$
(72)

In spite of the strong analogies the CK clusters and the KF clusters have a different meaning. In the CK formalism the clusters are defined directly in a given configuration of the Ising model as parallel spin connected by fictitious bonds, while in the KF formalism clusters are defined in the equivalent random cluster model. However, due to the equality of the weights (69) and (61) the statistical properties of both clusters are identical [40] and due to the relations between (61) and (63) both coincide with those of the correlated bond percolation whose weight is given by (63). More precisely, any percolation quantity g(C) which depends only on the bond configuration has the same average

$$ \langle g(C)\rangle _{{\text{KF}}}=\langle g(C)\rangle _{{\text{CK}}}=\langle g(C)\rangle _{W}\: , $$
(73)

where \( { \langle \dots\rangle _{{\text{KF}}} } \), \( { \langle \dots\rangle _{{\text{CK}}} } \) are the average over spin and bond configurations with weights given by (61) and (69) respectively and \( { \langle \dots\rangle _{W} } \) is the average over bond configurations in the bond correlated percolation with weights given by (63). In view of (73) it follows [40]

$$ | \langle S_i \rangle | = \langle \gamma_i^{\infty}\rangle_{{\text{CK}}} $$
(74)

and

$$ \langle S_iS_j\rangle=\langle\gamma_{ij}\rangle_{{\text{CK}}} \:. $$
(75)

We end this section noting that in order to generate an equilibrium CK droplet configuration in a computer simulation, it is enough to equilibrate a spin configuration of the Ising model and then introduce at random fictitious bonds between parallel spins with a probability given by (59).

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Coniglio, A., Fierro, A. (2009). Correlated Percolation. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_104

Download citation

Publish with us

Policies and ethics