Skip to main content

Definition of the Subject

Throughout we will use a fixed set of agents \(N=\{1,2,\dots,n\} \), where n is a given naturalnumber. For subsets \( { S,T } \)of N, we write \( { S\subset T }\) if each element of S is contained in T; \( { T\backslash S }\) denotes the set of agents in T except those in S. The power set of N is the set of all subsetsof N; each coalition \( { S\subset N }\) will be identified with the element \( {\boldsymbol{1}_S\in \left\{0,1\right\}^N } \), the vector with ith coordinateequal to 1 precisely when \( { i\in S }\). Fix a vector \( { x\in\mathbb{R}^N }\) and \( { S\subset N }\). The projection of x on \( { \mathbb{R}^S } \) is denoted by x S , and \( { x_{N\backslash S} }\) is sometimes more conveniently denoted by \({ x_{-S} } \). For any \( { y\in \mathbb{R}^S }\), \( { (x_{-S},y) }\) stands for the vector \( { z\in\mathbb{R}^N }\) such that \( { z_i=x_i }\) if \( { i\in N\backslash S }\) and \( { z_i=y_i }\) if \( { i\in S }\). We denote \( { x(S)=\sum_{i\in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Core :

The core of a cooperative cost game \( { \left\langle N,c\right\rangle } \) is the set of all coalitionally stable vectors of cost shares.

Cost function :

cost function relates to each level of output of a given production technology the minimal necessary units of input to generate it. It is non‐decreasing function \( { c\colon X\rightarrow \mathbb{R}_+ } \), where X is the (ordered) space of outputs.

Cost sharing problem :

A cost sharing problem is an ordered pair \( { (q,c) } \), where \( { q\in\mathbb{R}^N_+ } \) is a profile of individual demands of a fixed and finite group of agents \( { N=\left\{1,2,\dots,n\right\} } \) and c is a cost function.

Game theory :

The branch of applied mathematics and economics that studies situations where players make decisions in an attempt to maximize their returns. The essential feature is that it provides a formal modeling approach to social situations in which decision makers interact.

Cost sharing rule :

cost sharing rule is a mapping that assigns to each cost sharing problem under consideration a vector of non‐negative cost shares.

Demand game :

Strategic game where agents place demands for output strategically.

Demand revelation game :

Strategic game where agents announce their maximal contribution strategically.

Strategic game :

An ordered triple \( { G=\langle N, (A_i)_{i\in N},} {(\precsim_i)_{i\in N}\rangle } \), where

  • \( { N=\left\{1,2,\dots,n\right\} } \) is the set of players ,

  • A i is the set of available actions for player i,

  • \( { \precsim_i } \) is a  preference relation over the set of possible consequences C of action.

Bibliography

  1. Aadland D, Kolpin V (1998) Shared irrigation cost: an empirical and axiomatical analysis. Math Soc Sci 35:203–218

    MathSciNet  Google Scholar 

  2. Aadland D, Kolpin V (2004) Environmental determinants of cost sharing. J Econ Behav Organ 53:495–511

    Google Scholar 

  3. Albizuri MJ, Zarzuelo JM (2007) The dual serial cost‐sharing rule. Math Soc Sci 53:150–163

    MathSciNet  Google Scholar 

  4. Albizuri MJ, Santos JC, Zarzuelo JM (2003) On the serial cost sharing rule. Int J Game Theory 31:437–446

    MathSciNet  Google Scholar 

  5. An M (1998) Logconcavity versus logconvexity, a complete characterization. J Econ Theory 80:350–369

    Google Scholar 

  6. Archer A, Feigenbaum J, Krishnamurthy A, Sami R, Shenker S (2004) Approximation and collusion in multicast costsharing. Games Econ Behav 47:36–71

    MathSciNet  Google Scholar 

  7. Arin J, Iñarra E (2001) Egalitarian solutions in the core. Int J Game Theory 30:187–193

    Google Scholar 

  8. Atkinson AB (1970) On the measurement of inequality. J Econ Theory 2:244–263

    Google Scholar 

  9. Aumann RJ (1959) Acceptable points in general cooperative n‑person games. In: Kuhn HW, Tucker AW (eds) Contributions to the Theory of Games, vol IV. Princeton University Press, Princeton

    Google Scholar 

  10. Aumann RJ, Maschler M (1985) Game theoretic analysis of a bankruptcy problem from the Talmud. J Econ Theory 36:195–213

    MathSciNet  Google Scholar 

  11. Aumann RJ, Shapley LS (1974) Values of Non‐atomic Games. Princeton University Press, Princeton

    Google Scholar 

  12. Baumol W, Bradford D (1970) Optimal departure from marginal cost pricing. Am Econ Rev 60:265–283

    Google Scholar 

  13. Baumol W, Panzar J, Willig R (1988) Contestable Markets & the Theory of Industry Structure. 2nd edn Hartcourt Brace Jovanovich. San Diego

    Google Scholar 

  14. Bergantino A, Coppejans L (1997) A game theoretic approach to the allocation of joint costs in a maritime environment: A case study. Occasional Papers, vol 44. Department of Maritime Studies and International Transport, University of Wales, Cardi

    Google Scholar 

  15. Billera LJ, Heath DC (1982) Allocation of shared costs: A set of axioms yielding a unique procedure. Math Oper Res 7:32–39

    MathSciNet  Google Scholar 

  16. Billera LJ, Heath DC, Raanan J (1978) Internal telephone billing rates: A novel application of non‐atomic game theory. Oper Res 26:956–965

    Google Scholar 

  17. Bird CG (1976) On cost allocation for a spanning tree: A game theoretic approach. Networks 6:335–350

    MathSciNet  Google Scholar 

  18. Binmore K (2007) Playing for real: A text on game theory. Oxford University Press, Oxford

    Google Scholar 

  19. Bjorndal E, Hamers H, Koster M (2004) Cost allocation in a bank ATM network. Math Methods Oper Res 59:405–418

    MathSciNet  Google Scholar 

  20. Bondareva ON (1963) Some applications of linear programming to the theory of cooperative games. Problemy Kybernetiki 10:119–139 (in Russian)

    MathSciNet  Google Scholar 

  21. Brânzei R, Ferrari G, Fragnelli V, Tijs S (2002) Two approaches to the problem of sharing delay costs in joint projects. Ann Oper Res 109:359–374

    Google Scholar 

  22. Chen Y (2003) An experimental study of serial and average cost pricing mechanisms. J Publ Econ 87:2305–2335

    Google Scholar 

  23. Clarke EH (1971) Multipart pricing of public goods. Publ Choice 11:17–33

    Google Scholar 

  24. Dasgupta PS, Hammond PJ, Maskin ES (1979) The implementation of social choice rules: Some general results on incentive compatibility. Rev Econ Stud 46:185–216

    MathSciNet  Google Scholar 

  25. Davis M, Maschler M (1965) The kernel of a cooperative game. Nav Res Logist Q 12:223–259

    MathSciNet  Google Scholar 

  26. de Frutos MA (1998) Decreasing serial cost sharing under economies of scale. J Econ Theory 79:245–275

    Google Scholar 

  27. Demers A, Keshav S, Shenker S (1990) Analysis and simulation of a fair queueing algorithm. J Internetworking 1:3–26

    Google Scholar 

  28. Denault M (2001) Coherent allocation of risk capital. J Risk 4_7–21

    Google Scholar 

  29. Dewan S, Mendelson H (1990) User delay costs and internal pricing for a service facility. Manag Sci 36:1502–1517

    Google Scholar 

  30. Dutta B, Ray D (1989) A concept of egalitarianism under participation constraints. Econometrica 57:615–635

    MathSciNet  Google Scholar 

  31. Dutta B, Ray D (1991) Constrained egalitarian allocations. Games Econ Behav 3:403–422

    MathSciNet  Google Scholar 

  32. Flam SD, Jourani A (2003) Strategic behavior and partial cost sharing. Games Econ Behav 43:44–56

    MathSciNet  Google Scholar 

  33. Fleurbaey M, Sprumont Y (2006) Sharing the cost of a public good without subsidies. Université de Montréal, Cahier

    Google Scholar 

  34. Friedman E (2002) Strategic properties of heterogeneous serial cost sharing. Math Soc Sci 44:145–154

    Google Scholar 

  35. Friedman E (2004) Paths and consistency in additive cost sharing. Int J Game Theory 32:501–518

    Google Scholar 

  36. Friedman E, Moulin H (1999) Three methods to share joint costs or surplus. J Econ Theory 87:275–312

    MathSciNet  Google Scholar 

  37. Friedman E, Shenker S (1998) Learning and implementation on the Internet. Working paper 199821, Rutgers University, Piscataway

    Google Scholar 

  38. González-Rodríguez P, Herrero C (2004) Optimal sharing of surgical costs in the presence of queues. Math Methods Oper Res 59:435–446

    Google Scholar 

  39. Granot D, Huberman G (1984) On the core and nucleolus of minimum cost spanning tree games. Math Program 29:323–347

    MathSciNet  Google Scholar 

  40. Green J, Laffont JJ (1977) Characterization of satisfactory mechanisms for the revelation of preferences for public goods. Econometrica 45:427–438

    MathSciNet  Google Scholar 

  41. Groves T (1973) Incentives in teams. Econometrica 41:617–663

    MathSciNet  Google Scholar 

  42. Haimanko O (2000) Partially symmetric values. Math Oper Res 25:573–590

    MathSciNet  Google Scholar 

  43. Harsanyi J (1967) Games with incomplete information played by Bayesian players. Manag Sci 14:159–182

    MathSciNet  Google Scholar 

  44. Hart S, Mas-Colell A (1989) Potential, value, and consistency. Econometrica 57:589–614

    MathSciNet  Google Scholar 

  45. Haviv M (2001) The Aumann–Shapley price mechanism for allocating congestion costs. Oper Res Lett 29:211–215

    MathSciNet  Google Scholar 

  46. Hougaard JL, Thorlund-Petersen L (2000) The stand-alone test and decreasing serial cost sharing. Econ Theory 16:355–362

    Google Scholar 

  47. Hougaard JL, Thorlund-Petersen L (2001) Mixed serial cost sharing. Math Soc Sci 41:51–68

    MathSciNet  Google Scholar 

  48. Hougaard JL, Tind J (2007) Cost allocation and convex data envelopment. mimeo University of Copenhagen, Copenhagen

    Google Scholar 

  49. Henriet D, Moulin H (1996) Traffic‐based cost allocation in a network. J RAND Econ 27:332–345

    Google Scholar 

  50. Iñarra E, Isategui JM (1993) The Shapley value and average convex games. Int J Game Theory 22:13–29

    Google Scholar 

  51. Israelsen D (1980) Collectives, communes, and incentives. J Comp Econ 4:99–124

    Google Scholar 

  52. Jackson MO (2001) A crash course in implementation theory. Soc Choice Welf 18:655–708

    MathSciNet  Google Scholar 

  53. Joskow PL (1976) Contributions of the theory of marginal cost pricing. Bell J Econ 7:197–206

    Google Scholar 

  54. Kalai E (1977) Proportional solutions to bargaining situations: Interpersonal utility comparisons. Econometrica 45:1623–1630

    MathSciNet  Google Scholar 

  55. Kaminski M (2000) ‘Hydrolic’ rationing. Math Soc Sci 40:131–155

    MathSciNet  Google Scholar 

  56. Kolpin V, Wilbur D (2005) Bayesian serial cost sharing. Math Soc Sci 49:201–220

    MathSciNet  Google Scholar 

  57. Koster M (2002) Concave and convex serial cost sharing. In: Borm P, Peters H (eds) Chapters in game theory. Kluwer, Dordrecht

    Google Scholar 

  58. Koster M (2005) Sharing variable returns of cooperation. CeNDEF Working Paper 05–06, University of Amsterdam, Amsterdam

    Google Scholar 

  59. Koster M (2006) Heterogeneous cost sharing, the directional serial rule. Math Methods Oper Res 64:429–444

    MathSciNet  Google Scholar 

  60. Koster M (2007) The Moulin–Shenker rule. Soc Choice Welf 29:271–293

    MathSciNet  Google Scholar 

  61. Koster M (2007) Consistent cost sharing. mimeo, University of Amsterdam

    Google Scholar 

  62. Koster M, Tijs S, Borm P (1998) Serial cost sharing methods for multi‐commodity situations. Math Soc Sci 36:229–242

    Google Scholar 

  63. Koster M, Molina E, Sprumont Y, Tijs ST (2002) Sharing the cost of a network: core and core allocations. Int J Game Theory 30:567–599

    MathSciNet  Google Scholar 

  64. Koster M, Reijnierse H, Voorneveld M (2003) Voluntary contributions to multiple public projects. J Publ Econ Theory 5:25–50

    Google Scholar 

  65. Koutsoupias E, Papadimitriou C (1999) Worst-case equilibria. In: 16th Annual Symposium on Theoretical Aspects of Computer Science, Trier. Springer, Berlin, pp 404–413

    Google Scholar 

  66. Legros P (1986) Allocating joint costs by means of the Nucleolus. Int J Game Theory 15:109–119

    MathSciNet  Google Scholar 

  67. Leroux J (2004) Strategy‐proofness and efficiency are incompatible in production economies. Econ Lett 85:335–340

    MathSciNet  Google Scholar 

  68. Leroux J (2006) Profit sharing in unique Nash equilibrium: characterization in the two-agent case, Games and Economic Behavior 62:558–572

    MathSciNet  Google Scholar 

  69. Littlechild SC, Owen G (1973) A simple expression for the Shapley value in a simple case. Manag Sci 20:370–372

    Google Scholar 

  70. Littlechild SC, Thompson GF (1977) Aircraft landing fees: A game theory approach. Bell J Econ 8:186–204

    Google Scholar 

  71. Maniquet F, Sprumont Y (1999) Efficient strategy‐proof allocation functions in linear production economies. Econ Theory 14:583–595

    MathSciNet  Google Scholar 

  72. Maniquet F, Sprumont Y (2004) Fair production and allocation of an excludable nonrival good. Econometrica 72:627–640

    MathSciNet  Google Scholar 

  73. Maschler M (1990) Consistency. In: Ichiishi T, Neyman A, Tauman Y (eds) Game theory and applications. Academic Press, New York, pp 183–186

    Google Scholar 

  74. Maschler M (1992) The bargaining set, kernel and nucleolus. In: Aumann RJ, Hart S (eds) Handbook of Game Theory with Economic Applications, vol I. North–Holland, Amsterdam

    Google Scholar 

  75. Maschler M, Reijnierse H, Potters J (1996) Monotonicity properties of the nucleolus of standard tree games. Report 9556, Department of Mathematics, University of Nijmegen, Nijmegen

    Google Scholar 

  76. Maskin E, Sjöström T (2002) Implementation theory. In: Arrow KJ, Sen AK, Suzumura K (eds) Handbook of Social Choice and Welfare, vol I. North–Holland, Amsterdam

    Google Scholar 

  77. Matsubayashi N, Umezawa M, Masuda Y, Nishino H (2005) Cost allocation problem arising in hub-spoke network systems. Europ J Oper Res 160:821–838

    MathSciNet  Google Scholar 

  78. McLean RP, Pazgal A, Sharkey WW (2004) Potential, consistency, and cost allocation prices. Math Oper Res 29:602–623

    MathSciNet  Google Scholar 

  79. Mirman L, Tauman Y (1982) Demand compatible equitable cost sharing prices. Math Oper Res 7:40–56

    MathSciNet  Google Scholar 

  80. Monderer D, Shapley LS (1996) Potential games. Games Econ Behav 14:124–143

    MathSciNet  Google Scholar 

  81. Moulin H (1987) Equal or proportional division of a surplus, and other methods. Int J Game Theory 16:161–186

    MathSciNet  Google Scholar 

  82. Moulin H (1994) Serial cost‐sharing of an excludable public good. Rev Econ Stud 61:305–325

    Google Scholar 

  83. Moulin H (1995) Cooperative microeconomics: A game–theoretic introduction. Prentice Hall, London

    Google Scholar 

  84. Moulin H (1995) On additive methods to share joint costs. Japan Econ Rev 46:303–332

    Google Scholar 

  85. Moulin H (1996) Cost sharing under increasing returns: A comparison of simple mechanisms. Games Econ Behav 13:225–251

    MathSciNet  Google Scholar 

  86. Moulin H (1999) Incremental cost sharing: Characterization by coalition strategy‐proofness. Soc Choice Welf 16:279–320

    MathSciNet  Google Scholar 

  87. Moulin H (2000) Priority rules and other asymmetric rationing methods. Econometrica 68:643–684

    Google Scholar 

  88. Moulin H (2002) Axiomatic cost and surplus‐sharing. In: Arrow KJ, Sen AK, Suzumura K (eds) Handbook of Social Choice and Welfare. Handbooks in Economics, vol 19. North–Holland, Amsterdam, pp 289–357

    Google Scholar 

  89. Moulin H (2006) Efficient cost sharing with cheap residual claimant. mimeo Rice University, Housten

    Google Scholar 

  90. Moulin H (2007) The price of anarchy of serial, average and incremental cost sharing. mimeo Rice University, Housten

    Google Scholar 

  91. Moulin H, Shenker S (1992) Serial cost sharing. Econometrica 60:1009–1037

    MathSciNet  Google Scholar 

  92. Moulin H, Shenker S (1994) Average cost pricing versus serial cost sharing; an axiomatic comparison. J Econ Theory 64:178–201

    Google Scholar 

  93. Moulin H, Shenker S (2001) Strategy‐proof sharing of submodular cost: budget balance versus efficiency. Econ Theory 18:511–533

    MathSciNet  Google Scholar 

  94. Moulin H, Sprumont Y (2005) On demand responsiveness in additive cost sharing. J Econ Theory 125:1–35

    MathSciNet  Google Scholar 

  95. Moulin H, Sprumont Y (2006) Responsibility and cross‐subsidization in cost sharing. Games Econ Behav 55:152–188

    MathSciNet  Google Scholar 

  96. Moulin H, Vohra R (2003) Characterization of additive cost sharing methods. Econ Lett 80:399–407

    MathSciNet  Google Scholar 

  97. Moulin H, Watts A (1997) Two versions of the tragedy of the commons. Econ Des 2:399–421

    Google Scholar 

  98. Mutuswami S (2004) Strategy proof cost sharing of a binary good and the egalitarian solution. Math Soc Sci 48:271–280

    MathSciNet  Google Scholar 

  99. Myerson RR (1980) Conference structures and fair allocation rules. Int J Game Theory 9:169–182

    MathSciNet  Google Scholar 

  100. Myerson RR (1991) Game theory: Analysis of conflict. Harvard University Press, Cambridge

    Google Scholar 

  101. Nash JF (1950) Equilibrium points in n‑person games. Proc Natl Acad Sci 36:48–49

    MathSciNet  ADS  Google Scholar 

  102. O’Neill B (1982) A problem of rights arbitration from the Talmud. Math Soc Sci 2:345–371

    Google Scholar 

  103. Osborne MJ (2004) An introduction to game theory. Oxford University Press, New York

    Google Scholar 

  104. Osborne MJ, Rubinstein A (1994) A Course in Game Theory. MIT Press, Cambridge

    Google Scholar 

  105. Peleg B, Sudhölter P (2004) Introduction to the theory of cooperative games, Series C: Theory and Decision Library Series. Kluwer, Amsterdam

    Google Scholar 

  106. Pérez-Castrillo D, Wettstein D (2006) An ordinal Shapley value for economic environments. J Econ Theory 127:296–308

    Google Scholar 

  107. Potters J, Sudhölter P (1999) Airport problems and consistent allocation rules. Math Soc Sci 38:83–102

    Google Scholar 

  108. Razzolini L, Reksulak M, Dorsey R (2004) An experimental evaluation of the serial cost sharing rule. Working paper 0402, VCU School of Business, Dept. of Economics, Richmond

    Google Scholar 

  109. Ritzberger K (2002) Foundations of non‐cooperative game theory. Oxford University Press, Oxford

    Google Scholar 

  110. Rosenthal RW (1973) A class of games possessing pure‐strategy Nash equilibria. J Econ Theory 2:65–67

    Google Scholar 

  111. Roth AE (ed) (1988) The Shapley value, essays in honor of Lloyd S Shapley. Cambridge University Press, Cambridge, pp 307–319

    Google Scholar 

  112. Samet D, Tauman Y, Zang I (1984) An application of the Aumann–Shapley prices for cost allocation in transportation problems. Math Oper Res 9:25–42

    MathSciNet  Google Scholar 

  113. Sánchez SF (1997) Balanced contributions axiom in the solution of cooperative games. Games Econ Behav 20:161–168

    Google Scholar 

  114. Sandsmark M (1999) Production games under uncertainty. Comput Econ 14:237–253

    Google Scholar 

  115. Schmeidler D (1969) The Nucleolus of a characteristic function game. SIAM J Appl Math 17:1163–1170

    MathSciNet  Google Scholar 

  116. Shapley LS (1953) A value for n‑person games. Ann Math Study, vol 28. Princeton University Press, Princeton, pp 307–317

    Google Scholar 

  117. Shapley LS (1967) On balanced sets and cores. Nav Res Logist Q 14:453–460

    Google Scholar 

  118. Shapley LS (1969) Utility comparison and the theory of games. In: Guilbaud GT (ed) La decision: Aggregation et dynamique des ordres de preference. Editions du Centre National de la Recherche Scientifique. Paris pp 251–263

    Google Scholar 

  119. Shapley LS (1971) Cores of convex games. Int J Game Theory 1:1–26

    MathSciNet  Google Scholar 

  120. Sharkey W (1982) Suggestions for a game–theoretic approach to public utility pricing and cost allocation. Bell J Econ 13:57–68

    Google Scholar 

  121. Sharkey W (1995) Network models in economics. In: Ball MO et al (eds) Network routing. Handbook in Operations Research and Management Science, vol 8. North–Holland, Amsterdam

    Google Scholar 

  122. Shubik M (1962) Incentives, decentralized control, the assignment of joint cost, and internal pricing. Manag Sci 8:325–343

    MathSciNet  Google Scholar 

  123. Skorin-Kapov D (2001) On cost allocation in hub-like networks. Ann Oper Res 106:63–78

    MathSciNet  Google Scholar 

  124. Skorin-Kapov D, Skorin–Kapov J (2005) Threshold based discounting network: The cost allocation provided by the nucleolus. Eur J Oper Res 166:154–159

    Google Scholar 

  125. Sprumont Y (1998) Ordinal cost sharing. J Econ Theory 81:126–162

    MathSciNet  Google Scholar 

  126. Sprumont Y (2000) Coherent cost sharing. Games Econ Behav 33:126–144

    MathSciNet  Google Scholar 

  127. Sprumont Y (2005) On the discrete version of the Aumann–Shapley cost‐sharing method. Econometrica 73:1693–1712

    MathSciNet  Google Scholar 

  128. Sprumont Y, Ambec S (2002) Sharing a river. J Econ Theory 107:453–462

    MathSciNet  Google Scholar 

  129. Sprumont Y, Moulin H (2005) Fair allocation of production externalities: Recent results. CIREQ working paper 28-2005, Montreal

    Google Scholar 

  130. Sudhölter P (1998) Axiomatizations of game theoretical solutions for one‐output cost sharing problems. Games Econ Behav 24:42–71

    Google Scholar 

  131. Suijs J, Borm P, Hamers H, Koster M, Quant M (2005) Communication and cooperation in public network situations. Ann Oper Res 137:117–140

    MathSciNet  Google Scholar 

  132. Tauman Y (1988) The Aumann–Shapley prices: A survey. In: Roth A (ed) The shapley value. Cambridge University Press, Cambridge, pp 279–304

    Google Scholar 

  133. Thomas LC (1992) Dividing credit‐card costs fairly. IMA J Math Appl Bus & Ind 4:19–33

    Google Scholar 

  134. Thomson W (1996) Consistent allocation rules. Mimeo, Economics Department, University of Rochester, Rochester

    Google Scholar 

  135. Thomson W (2001) On the axiomatic method and its recent applications to game theory and resource allocation. Soc Choice Welf 18:327–386

    MathSciNet  Google Scholar 

  136. Tijs SH, Driessen TSH (1986) Game theory and cost allocation problems. Manag Sci 32:1015–1028

    MathSciNet  Google Scholar 

  137. Tijs SH, Koster M (1998) General aggregation of demand and cost sharing methods. Ann Oper Res 84:137–164

    MathSciNet  Google Scholar 

  138. Timmer J, Borm P, Tijs S (2003) On three Shapley‐like solutions for cooperative games with random payoffs. Int J Game Theory 32:595–613

    MathSciNet  Google Scholar 

  139. van de Nouweland A, Tijs SH (1995) Cores and related solution concepts for multi‐choice games. Math Methods Oper Res 41:289–311

    Google Scholar 

  140. von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton

    Google Scholar 

  141. Watts A (2002) Uniqueness of equilibrium in cost sharing games. J Math Econ 37:47–70

    MathSciNet  Google Scholar 

  142. Weber RJ (1988) Probabilistic values for games. In: Roth AE (ed) The Shapley value. Cambridge University Press, Cambridge

    Google Scholar 

  143. Young HP (1985) Producer incentives in cost allocation. Econometrica 53:757–765

    Google Scholar 

  144. Young HP (1985) Monotonic solutions of cooperative games. Int J Game Theory 14:65–72

    Google Scholar 

  145. Young HP (1985) Cost allocation: Methods, principles, applications. North-Holland, Amsterdam

    Google Scholar 

  146. Young HP (1988) Distributive justice in taxation. J Econ Theory 44:321–335

    Google Scholar 

  147. Young HP (1994) Cost allocation. In: Aumann RJ, Hart S (eds) Handbook of Game Theory, vol II. Elsevier, Amsterdam, pp 1193–1235

    Google Scholar 

  148. Young HP (1998) Cost allocation, demand revelation, and core implementation. Math Soc Sci 36:213–229

    Google Scholar 

Download references

I thank Hervé Moulin as a referee of this article, and his useful suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Koster, M. (2009). Cost Sharing. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_108

Download citation

Publish with us

Policies and ethics