Skip to main content

Definition of the Subject

Many seemingly different systems, with extremely different microscopic physics, ranging from magnets to superconductors, share the same essentialingredients and can be described under the unifying concept of disordered elastic media. In all these systems, an internal elastic structure, such as aninterface between regions of opposite magnetization in magnetic systems, is subject to the effects of disorder existing in the material. A speciallyinteresting feature of all these systems is that these disordered elastic structures can be set in motion by applying an external force on them(e. g. a magnetic field sets in motion a magnetic interface), and that motion will be drastically affected by the presence of thedisorder. What properties result from this competition between elasticity and disorder is a complicated problem which constitutes the essence of thephysics of disordered elastic media. The resulting physics present characteristics...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Pinning :

An action exerted by impurities on an object. The object has a preferential position in space, and will move in response to an external force only if this force is large enough.

Scaling :

The fact that each of two quantities varies in a power-law relationship to the other.

Random manifold :

A single elastic structure (line, sheet) embedded in a random environment.

Bragg glass :

A periodic elastic structure embedded in a weakly disordered environment, nearly as ordered as a solid but exhibiting some characteristics normally associated with glasses.

Creep :

Very slow response at finite temperature of a pinned structure in response to an external force.

Bibliography

Primary Literature

  1. Lemerle S et al (1998) Phys Rev Lett 80:849

    ADS  Google Scholar 

  2. Krusin‐Elbaum L et al (2001) Nature 410:444

    Google Scholar 

  3. Repain V et al (2004) Europhys Lett 68:460

    ADS  Google Scholar 

  4. Metaxas PJ et al (2007) Phys Rev Lett 99:217208

    ADS  Google Scholar 

  5. Yamanouchi M et al (2006) Phys Rev Lett 96:096601

    ADS  Google Scholar 

  6. Yamanouchi M et al (2007) Science 317:1726

    ADS  Google Scholar 

  7. Tybell T, Paruch P, Giamarchi T, Triscone JM (2002) Phys Rev Lett 89:97601

    ADS  Google Scholar 

  8. Paruch P, Giamarchi T, Triscone JM (2005) Phys Rev Lett 94:197601

    ADS  Google Scholar 

  9. Wilkinsion D, Willemsen JF (1983) J Phys A 16:3365

    MathSciNet  ADS  Google Scholar 

  10. Moulinet S, Guthmann C, Rolley E (2002) Eur Phys J E 8:437

    Google Scholar 

  11. Barabasi A-L, Stanley HE (1995) In: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  12. Bouchaud E et al (2002) J Mech Phys Solids 50:1703

    MATH  ADS  Google Scholar 

  13. Alava M, Nukalaz PKVV, Zapperi S (2006) Adv Phys 55:349

    ADS  Google Scholar 

  14. Blatter G et al (1994) Rev Mod Phys 66:1125

    ADS  Google Scholar 

  15. Nattermann T, Scheidl S (2000) Adv Phys 49:607

    ADS  Google Scholar 

  16. Giamarchi T, Bhattacharya S (2002) In: Berthier C et al (eds) High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy. Springer, Berlin, p 314. arXiv:cond-mat/0111052

  17. Grüner G (1988) Rev Mod Phys 60:1129

    Google Scholar 

  18. Nattermann T, Brazovskii S (2004) Adv Phys 53:177

    ADS  Google Scholar 

  19. Seshadri R, Westervelt RM (1992) Phys Rev B 46:5150

    ADS  Google Scholar 

  20. Murray CA, Sprenger WO, Wenk R (1990) Phys Rev B 42:688

    ADS  Google Scholar 

  21. Coupier G, Guthmann C, Noat Y, Saint Jean M (2005) Phys Rev E 71:046105

    ADS  Google Scholar 

  22. Andrei EY et al (1988) Phys Rev Lett 60:2765

    ADS  Google Scholar 

  23. Giamarchi T (2004) In: Quantum phenomena in mesoscopic systems. IOS Press, Bologna. arXiv:cond-mat/0403531

  24. Eskildsen MR et al (2002) Phys Rev Lett 89:187003

    ADS  Google Scholar 

  25. Larkin AI (1970) Sov Phys JETP 31:784

    ADS  Google Scholar 

  26. Mézard M, Parisi G, Virasoro MA (1987) Spin Glass Theory and beyond. World Scientific, Singapore

    Google Scholar 

  27. Mézard M, Parisi G (1991) J de Phys I 4:809

    Google Scholar 

  28. Fisher DS (1986) Phys Rev Lett 56:1964

    ADS  Google Scholar 

  29. Nature group (2007) Nature Material, vol. 6. Focus issue on Multiferroics

    Google Scholar 

  30. Nattermann T (1983) J Phys C 16:4125

    ADS  Google Scholar 

  31. Joanny JF, de Gennes PG (1984) J Chem Phys 81:552

    ADS  Google Scholar 

  32. Gao H, Rice JR (1989) J Appl Mech 56:828

    MATH  Google Scholar 

  33. Huse DA, Henley CL (1985) Phys Rev Lett 54:2708

    ADS  Google Scholar 

  34. Kardar M (1985) Phys Rev Lett 55:2923

    ADS  Google Scholar 

  35. Le Doussal P, Wiese K, Chauve P (2004) Phys Rev E 69:026112

    ADS  Google Scholar 

  36. Giamarchi T, Kolton AB, Rosso A (2006) In: Miguel MC, Rubi JM (eds) Jamming, Yielding and Irreversible deformation in condensed matter. Springer, Berlin, p 91. arXiv:cond-mat/0503437

  37. Yoshino H (1998) Phys Rev Lett 81:1493

    ADS  Google Scholar 

  38. Rosso A, Krauth W (2002) Phys Rev B 65:12202

    ADS  Google Scholar 

  39. Rosso A, Krauth W (2002) Phys Rev E 65:025101R

    ADS  Google Scholar 

  40. Petaja V et al (2006) Phys Rev E 73:94517

    ADS  Google Scholar 

  41. Nelson DR (1978) Phys Rev B 18:2318

    ADS  Google Scholar 

  42. Giamarchi T, Le Doussal P (1995) Phys Rev B 52:1242

    ADS  Google Scholar 

  43. Fisher DS, Fisher MPA, Huse DA (1990) Phys Rev B 43:130

    ADS  Google Scholar 

  44. Grier DG et al (1991) Phys Rev Lett 66:2270

    ADS  Google Scholar 

  45. Kim P, Yao Z, Lieber CM (1996) Phys Rev Lett 77:5118

    ADS  Google Scholar 

  46. Schilling A, Fisher RA, Crabtree GW (1996) Nature 382:791

    ADS  Google Scholar 

  47. Nattermann T (1990) Phys Rev Lett 64:2454

    ADS  Google Scholar 

  48. Korshunov SE (1993) Phys Rev B 48:3969

    ADS  Google Scholar 

  49. Giamarchi T, Le Doussal P (1994) Phys Rev Lett 72:1530

    ADS  Google Scholar 

  50. For a scalar displacement or isotropic elasticity the exponent is universal. When the full anistropy of the elastic constants is taken into account in the FRG equations [Bogner S, Emig T, Nattermann T (2001) Phys Rev B 63 174501] the possible variation of the exponent with the magnetic field is still less than a percent.

    Google Scholar 

  51. Carpentier D, Le Doussal P, Giamarchi T (1996) Europhys. Lett. 35:379

    ADS  Google Scholar 

  52. Kierfeld J, Nattermann T, Hwa T (1997) Phys Rev B 55:626

    ADS  Google Scholar 

  53. Fisher DS (1997) Phys Rev Lett 78:1964

    ADS  Google Scholar 

  54. Gingras MJP, Huse DA (1996) Phys Rev B 53:15193

    ADS  Google Scholar 

  55. Otterlo AV, Scalettar R, Zimányi G (1998) Phys Rev Lett 81:1497

    Google Scholar 

  56. Giamarchi T, Le Doussal P (1995) Phys Rev Lett 75:3372

    ADS  Google Scholar 

  57. Yaron U et al (1994) Phys Rev Lett 73:2748

    ADS  Google Scholar 

  58. Ling XS et al (2001) Phys Rev Lett 86:712

    ADS  Google Scholar 

  59. Klein T et al (2001) Nature 413:404

    ADS  Google Scholar 

  60. Ertas D, Nelson DR (1996) Phys C 272:79

    ADS  Google Scholar 

  61. Giamarchi T, Le Doussal P (1997) Phys Rev B 55:6577

    ADS  Google Scholar 

  62. Khaykovich B et al (1996) Phys Rev Lett 76:2555

    ADS  Google Scholar 

  63. Deligiannis K et al (1997) Phys Rev Lett 79:2121

    ADS  Google Scholar 

  64. Paltiel Y, Zeldov E, Myasoedov Y, Rappaport ML (2000) Phys Rev Lett 85:3712

    ADS  Google Scholar 

  65. Avraham N et al (2001) Nature 411:451

    ADS  Google Scholar 

  66. Zinn‐Justin J (1989) Quantum field theory and Critical Phenomena. Clarendon Press, Oxford

    Google Scholar 

  67. Kardar M, Parisi G, Zhang Y (1986) Phys Rev Lett 56:889

    MATH  ADS  Google Scholar 

  68. Janssen HK (1976) Z Phys B 23:377

    ADS  Google Scholar 

  69. Martin PC, Siggia ED, Rose HA (1973) Phys Rev A 8:423

    ADS  Google Scholar 

  70. Larkin AI, Ovchinnikov YN (1979) J Low Temp Phys 34:409

    ADS  Google Scholar 

  71. Nattermann T, Stepanow S, Tang LH, Leschhorn H (1992) J Phys 2:1483

    Google Scholar 

  72. Chauve P, Giamarchi T, Le Doussal P (2000) Phys Rev B 62:6241

    ADS  Google Scholar 

  73. Fisher DS (1985) Phys Rev B 31:1396

    ADS  Google Scholar 

  74. Narayan O, Fisher D (1993) Phys Rev B 48:7030

    ADS  Google Scholar 

  75. Duemmer O, Krauth W (2005) arXiv:cond-mat/0501467

  76. Kolton AB, Rosso A, Giamarchi T, Krauth W (2006) Phys Rev Lett 97:057001

    ADS  Google Scholar 

  77. Bustingorry S, Kolton AB, Giamarchi T (2008) Europhys Lett 81:26005

    ADS  Google Scholar 

  78. Larkin AI, Ovchinnikov YN (1974) Sov Phys JETP 38:854

    ADS  Google Scholar 

  79. Schmidt A, Hauger W (1973) J Low Temp Phys 11:667

    ADS  Google Scholar 

  80. Koshelev AE, Vinokur VM (1994) Phys Rev Lett 73:3580

    ADS  Google Scholar 

  81. Giamarchi T, Le Doussal P (1996) Phys Rev Lett 76:3408

    ADS  Google Scholar 

  82. Moon K et al (1997) Phys Rev Lett 77:2378

    Google Scholar 

  83. Kolton AB, Grønbech‐Jensen DDN (1999) Phys Rev Lett 83:3061

    Google Scholar 

  84. Fangohr H, Cox SJ, de Groot PAJ (2001) Phys Rev B 64:64505

    ADS  Google Scholar 

  85. Pardo F et al (1998) Nature 396:348

    ADS  Google Scholar 

  86. Balents L, Marchetti C, Radzihovsky L (1998) Phys Rev B 57:7705

    ADS  Google Scholar 

  87. Le Doussal P, Giamarchi T (1998) Phys Rev B 57:11356

    ADS  Google Scholar 

  88. Perruchot F et al (2000) Physica B 284:1984

    ADS  Google Scholar 

  89. Anderson PW, Kim YB (1964) Rev Mod Phys 36:39

    ADS  Google Scholar 

  90. Ioffe LB, Vinokur VM (1987) J Phys C 20:6149

    ADS  Google Scholar 

  91. Nattermann T (1987) Europhys Lett 4:1241

    ADS  Google Scholar 

  92. Feigelman M, Geshkenbein VB, Larkin AI, Vinokur V (1989) Phys Rev Lett 63:2303

    ADS  Google Scholar 

  93. Chauve P, Giamarchi T, Le Doussal P (1998) Europhys Lett 44:110

    ADS  Google Scholar 

  94. Kolton AB, Rosso A, Giamarchi T (2005) Phys Rev Lett 94:047002

    ADS  Google Scholar 

  95. Fuchs DT et al (1998) Phys Rev Lett 80:4971

    ADS  Google Scholar 

  96. Kolton AB, Rosso A, Giamarchi T (2005) Phys Rev Lett 95:180604

    ADS  Google Scholar 

  97. Cugliandolo LF, Kurchan J, Bouchaud JP, Mezard M (1998) In: Young AP (ed) Spin Glasses and Random fields. World Scientific, Singapore

    Google Scholar 

Books and Reviews

  1. Barabasi A-L, Stanley HE (1995) Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Nelson DR (2002) Defects and Geometry in Condensed Matter Physics. Cambridge University Press, Cambridge

    Google Scholar 

  3. Young AP (ed) (1998) Spin Glasses and Random fields. World Scientific, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Giamarchi, T. (2009). Disordered Elastic Media. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_127

Download citation

Publish with us

Policies and ethics