Skip to main content

Distributed Controls of Multiple Robotic Systems, An Optimization Approach

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

This chapter describes an integrated approach for designing communication, sensing, and control systems for mobile distributedsystems. A three‐step process is used to create locally optimal distributed controls for multiple robot vehicles. The first step is to definea global performance index whose extremum produces a desired cooperative result. The second step is to partition and eliminate terms in theperformance index so that only terms of local neighbors are included. This step minimizes communication amongst robots and improves system robustness. The thirdstep is to define a control law that is the gradient of the partitioned performance index. This control drives the system towards the local extremum of thepartitioned performance index. Graph theoretic methods are then used to analyze the input/output reachability and structural controllability and observabilityof the decentralized system. Connective stability of the resulting controls is evaluated with...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Multiple robotic system:

Multiple robotic systems are a collective of multiple robotic vehicles (e. g.ground‐based, aerial, underwater, and/or some combination thereof) whereineach robot has assigned tasks designed to help the entire system achieve itsoverall goals.

Provably convergent cooperative controls:

Provablyconvergent cooperative controls is a distribution of control laws amongthe agents of a multiple robotic system with the objective that global stability is preserved and a global performance index is optimized. The controllaws take into account the physics of the individual robots, the communication protocols and information exchange between the robots, the overall terrain, andthe goals/constraints of the entire collective.

Connective stability:

A  system is connectively stable if it is stable in the sense of Lyapunov forall structural perturbations of the interconnection matrix that describesthe system (see [63]). These structural perturbations include attenuation,degradation, and loss of communication between nodes in the network.

Vehicle communication protocols:

In a multiple robotic system, vehicle communication protocols refer to thetype of communication algorithm used by the vehicles to share informationamongst each other. These protocols are crucial in determining stability andperformance properties.

Time division multiple access (TDMA):

TDMA is a channel access method for shared medium (usually radio) networks. It allows several users to share the samefrequency channel by dividing the signal into timeslots. The users transmit in rapid succession, one after the other, each using their own timeslot. Thisallows multiple stations (e. g. robots) to share the same transmission medium (e. g. radio frequency channel) while using only part of itsbandwidth.

Carrier sense multiple access (CSMA):

CSMA is also a channel access method for shared medium networks where thestation first listens to the channel for a predetermined amount of time soas to check for any activity on the channel. If the channel is sensed “idle”then the station is permitted to transmit. If the channel is sensed as“busy” the station defers its transmission. This access method is used inwired TCP/IP networks.

Linear TDMA broadcast:

The number of time slots in the TDMA network is equal to the total number ofnodes in the network.

Polylogarithmic TDMA broadcast:

The number of time slots in the TDMA network is less than the total numberof nodes because of spatial reuse. This method only applies as long as thedegree of the network (the number of nodes within communication range) issmall (see [66]).

Bibliography

  1. Arai T, Pagello E, Parker PE (2002)Guest Editorial: Advances in Multirobot Systems.IEEE Trans Robot Autom 18(5):655–659

    Google Scholar 

  2. Bonabeau E, Dorigo M, Theraulaz G (1999)Swarm Intelligence: From Natural to Artificial Systems.Oxford University Press, New York

    MATH  Google Scholar 

  3. Arkin RC (1992)Cooperation Without Communication: Multiagent Schema-Based Robot Navigation.J Robotic Syst 9(3):351–364

    Google Scholar 

  4. Balch T, Arkin RC (1998)Behavior-Based Formation Control for Multirobot Teams.IEEE Trans Robot Autom 14(6):926–939

    Google Scholar 

  5. Kube RC, Zhang H (1993)Collective Robotics: From Social Insects to Robots.Adapt Behav 2(2):189–218

    Google Scholar 

  6. Parker LE (1998)ALLIANCE: An Architecture for Fault Tolerant Multirobot Cooperation.IEEE Trans Robot Autom 14(2):220–240

    Google Scholar 

  7. Di Marco M, Carulli A, Giannitrapani A, Vicino A (2003)Simultaneous Localization and Map Building for a Team of Cooperating Robots: A Set Membership Approach.IEEE Trans Robot 19(2):238–249

    Google Scholar 

  8. Burgard W, Moors M, Stanchniss C, Schneider FE (2005)Coordinated Multi-Robot Exploration.IEEE Trans Robot 21(3):376–386

    Google Scholar 

  9. Cortes J, Martinez S, Karatas T, Bullo F (2004)Coverage Control for Mobile Sensing Networks.IEEE Trans Robot Autom 20(2):865–875

    Google Scholar 

  10. Tang Z, Ozguner U (2005)Motion Planning for Multitarget Surveillance With Mobile Sensor Agents.IEEE Trans Robot 21(5):898–908

    Google Scholar 

  11. Vidal R, Shakernia O, Kim HJ, Shim DH,Sastry S (2002) Probabilistic Pursuit-Evasion Games: Theory, Implementation, and Experimental Evaluation. IEEE TransRobot Autom 18(5):662–669

    Google Scholar 

  12. Isler V, Kannan S, Khanna S (2005)Randomized Pursuit-Evasion in a Polygonal Environment.IEEE Trans Robot 21(5):875–894

    Google Scholar 

  13. Cao Z, Tan M, Li L, Gu N, Wang S (2006)Cooperative Hunting by Distributed Mobile Robots Based on Local Interaction.IEEE Trans Robot 22(2):403–407

    Google Scholar 

  14. Bopardikar SD, Bullo F, Hespanha JP (2007)Cooperative Pursuit with Sensing Limitations. In:Proceedings of the 2007 American Control Conference. IEEE, Minneapolis

    Google Scholar 

  15. Fua CH, Ge SS (2005)COBOS: Cooperative Backoff Adaptive Scheme for Multirobot Task Allocation.IEEE Trans Robot 21(6):1168–1178

    Google Scholar 

  16. Daigle MJ, Koutsoukos XD, Biswas G (2007)Distributed Diagnosis in Formations of Mobile Robots.IEEE Trans Robot 23(2):353–369

    Google Scholar 

  17. Crandall JW, Cummings ML (2007)Identifying Predictive Metrics for Supervisory Control of Multiple Robots.IEEE Trans Robot 23(5):942–951

    Google Scholar 

  18. Chen Q, Luh JYS (1994)Coordination and Control of a Group of Small Mobile Robots. In:Proceedings of the IEEE International Conference on Robotics and Automation,vol 3. pp 2315–2320. IEEE, San Diego

    Google Scholar 

  19. Yamaguchi H, Arai T (1994)Distributed and Autonomous Control Method for Generating Shape of Multiple Mobile Robot Group. In:Proceedings of the IEEE International Conference on Intelligent Robots and Systems,vol 2. pp 800–807. IEEE, Munich

    Google Scholar 

  20. Yamaguchi H, Burdick JW (1998)Asymptotic Stabilization of Multiple Nonholonomic Mobile Robots Forming Group Formations. In:Proceedings of the 1998 Conference on Robotics & Automation.Leuven, Belgium, pp 3573–3580

    Google Scholar 

  21. Yoshida E, Arai T, Ota J, Miki T (1994)Effect of Grouping in Local Communication System of Multiple Mobile Robots. In:Proceedings of the IEEE International Conference on Intelligent Robots and Systems,vol. 2. pp 808–815. IEEE, Munich

    Google Scholar 

  22. Molnar P, Starke J (2000)Communication Fault Tolerance in Distributed Robotic Systems.In: Parker LE, Bekey G, Barhen J (eds) Distributed Autonomous Robotic Systems4. Springer, Berlin, pp 99–108

    Google Scholar 

  23. Schneider FE, Wildermuth D, Wolf HL (2000)Motion Coordination in Formations of Multiple Robots Using a Potential Field Approach.In: Parker LE, Bekey G, Barhen J (eds) Distributed Autonomous Robotic Systems 4.Springer, Berlin, pp 305–314

    Google Scholar 

  24. Stankovic SS, Stanojevic MJ, Siljak DD (2000)Decentralized Overlapping Control of a Platoon of Vehicles.IEEE Trans Control Syst Technol 8:816–832

    Google Scholar 

  25. Seiler P, Pant A, Hedrick K (2004)Disturbance Propagation in Vehicle StringsIEEE Trans Autom Control 29:1835–1841

    Google Scholar 

  26. Barooah P, Mehta PG, Hespanha JP (2007)Control of Large Vehicular Platoons: Improving Closed Loop Stability by Mistuning. In:Proceedings of the 2007 American Control Conference. IEEE, Minneapolis

    Google Scholar 

  27. Ogren P, Egerstedt M, Hu X (2002)A Control Lyapunov Function Approach to Multiagent Coordination.IEEE Trans Robot Autom 18(5):847–851

    Google Scholar 

  28. Lawton JRT, Beard RW (2003)A Decentralized Approach to Formation Maneuvers.IEEE Trans Robot Autom 19(6):933–941

    Google Scholar 

  29. Tanner HG, Pappas GJ, Kumar V (2004)Leader-to-Formation Stability.IEEE Trans Robot Autom 20(3):443–455

    Google Scholar 

  30. Tabuada P, Pappas GJ, Lima P (2005)Motion Feasibility of Multi-Agent Formations.IEEE Trans Robot 21(3):387–392

    Google Scholar 

  31. Antonelli G, Chiaverini S (2006)Kinematic Control of Platoons of Autonomous Vehicles.IEEE Trans Robot 22(6):1285–1292

    Google Scholar 

  32. Beni G, Liang P (1996)Pattern Reconfiguration in Swarms – Convergence of a Distributed Asynchronous and Bounded Iterative Algorithm.IEEE Trans Robot Autom 12(3):485–490

    Google Scholar 

  33. Liu Y, Passino K, Polycarpou M (2001)Stability Analysis of One-Dimensional Asynchronous Swarms.American Control Conference, Arlington, pp 25–27, 716–721

    Google Scholar 

  34. Winfield A (2000)Distributed Sensing and Data Collection via Broken Ad Hoc Wireless Connected Networks of Mobile Robots.In: Parker LE, Bekey G, Barhen J (eds) Distributed Autonomous Robotic Systems 4.Springer, Berlin, pp 273–282

    Google Scholar 

  35. Desai JP, Ostrowski J, Kumar V (1998) Controlling Formations of Multiple MobileRobots. In: Proceedings of the 1998 IEEE Conference on Robotics & Automation. IEEE, Leuven,pp 2864–2869

    Google Scholar 

  36. Desai JP, Kumar V, Ostrowski J (2001)Modeling and Control of Formations of Nonholonomic Mobile Robots.IEEE Trans Robot Autom 17(6):905–908

    Google Scholar 

  37. Ji M, Egerstedt M (2007)Distributed Coordination Control of Multiagent Systems While Preserving Connectedness.IEEE Trans Robot 23(4):693–703

    Google Scholar 

  38. Zavlanos MM, Pappas GJ (2007)Potential Fields for Maintaining Connectivity of Mobile Networks.IEEE Trans Robot 23(4):812–816

    Google Scholar 

  39. Belta C, Kumar V (2004)Abstraction and Control of Groups of Robots.IEEE Trans Robot Autom 20(5):865–875

    Google Scholar 

  40. Ge SS, Fua CH (2005)Queues and Artificial Potential Trenches for Multrobot Formations.IEEE Trans Robot 21(4):646–656

    Google Scholar 

  41. Milutinovic D, Lima P (2006)Modeling and Optimal Centralized Control of a Large-Size Robotic Population.IEEE Trans Robot 22(6):1280–1285

    Google Scholar 

  42. Kloetzer M, Belta C (2007)Temporal Logic Planning and Control of Robotic Swarms by Hierarchical Abstractions.IEEE Trans Robot 23(2):320–330

    Google Scholar 

  43. Tanner HG, Loizou SG, Kyriakopoulos KJ (2003)Nonholonomic Navigation and Control of Cooperating Mobile Manipulators.IEEE Trans Robot Autom 19(1):53–64

    Google Scholar 

  44. Yamashita A, Arai T, Ota J, Asama H (2003)Motion Planning of Multiple Mobile Robots for Cooperative Manipulation and Transportation.IEEE Trans Robot Autom 19(2):223–237

    Google Scholar 

  45. Bonaventura CS, Jablokow KW (2005)A Modular Approach to the Dynamics of Complex Multirobot Systems.IEEE Trans Robot 21(1):26–37

    Google Scholar 

  46. Lewis C, Feddema JT, Klarer P (1998)Robotic Perimeter Detection System. In: Proceedings of SPIE, vol 3577. Boston, pp 14–21

    Google Scholar 

  47. Feddema JT, Lewis C, Schoenwald DA (2002)Decentralized Control of Cooperative Robotic Vehicles: Theory and Application.IEEE Trans Robot Autom 18(5):852–864

    Google Scholar 

  48. Hurtado JE, Robinett III RD (2005)Convergence of Newton's Method via Lyapunov Analysis.AIAA J Guidance Control Dyn 28(2):363–365

    Google Scholar 

  49. Hurtado JE, Robinett III RD, Dohrmann CR, Goldsmith SY (2004)Decentralized Control for aSwarm of Vehicles Performing Source Localization.J Intell Robot Syst 41:1–18

    Google Scholar 

  50. Robinett RD, Hurtado JE (2004)Stability and Control of Collectives Systems.J Intell Robot Syst 39:43–55

    Google Scholar 

  51. Clauset A, Tanner B, Byrne R, Abdallah CT (2007)Controlling Across Complex Networks.Proceedings of the IFAC Time-delay Symposium, Nantes, pp 17–19

    Google Scholar 

  52. Hespanha JP, Naghshtabrizi P, Xu Y (2007)A Survey of Recent Results in Networked Control Systems.Proc IEEE Special Issue: Technol Netw Control Syst 95(1):138–162

    Google Scholar 

  53. Gelfand IM, Fomin SV (1963)Calculus of Variations. Prentice-Hall, New Jersey

    Google Scholar 

  54. Frieden BR (1998)Physics from Fischer Information.Cambridge University Press, Cambridge

    Google Scholar 

  55. Feddema JT, Robinett RD, Byrne RH (2003)An Optimization Approach to Distributed Controls of Multiple Robot Vehicles,Workshop on Control and Cooperation of Intelligent Miniature Robots.IEEE/RSJ Int Conf Intell Robot Syst. IEEE, Las Vegas

    Google Scholar 

  56. Censor Y, Zenios SA (1997)Parallel Optimization: Theory, Algorithms, and Applications.Oxford University Press, Oxford

    MATH  Google Scholar 

  57. Luenberger DG (1984)Linear and Nonlinear Programming, 2nd edn.Addison Wesley, Reading

    MATH  Google Scholar 

  58. Schmitt DJ et al (2003)Intelligent Mobile Land Mine (IMLM) System, Sandia National Laboratories Report.SAND 2003–1186

    Google Scholar 

  59. Feddema JT, Schoenwald DA (2002)Stability Analysis of Decentralized Cooperative Controls. In: ShultzAC, Parker LE (eds) Multi-Robot Systems: From Swarms to IntelligentAutomata. Kluwer, Boston, pp 133–122

    Google Scholar 

  60. Feddema JT, Schoenwald DA (2002)Distributed Communication/Navigation Robot Vehicle Network. In:Proceedings of World Automation Congress, Orlando, pp 9–13. TSI Press, Albuquerque

    Google Scholar 

  61. Byrne RH, Adkins DR, Eskridge SE, Harrington JJ, Heller EJ, Hurtado JE (2002)Miniature Mobile Robots for Plume Tracking and Source Localization Research.J Micromechatronics 1(3):253–261

    Google Scholar 

  62. Byrne RH, Eskridge SE, Hurtado JE, Salvage EL (2003)Algorithms and Analysis of Underwater Vehicle Plume Tracing, Sandia National Laboratories Report.SAND pp 2003–2643

    Google Scholar 

  63. Siljak DD (1991)Decentralized Control of Complex Systems.Academic Press, San Diego

    Google Scholar 

  64. Sezer ME, Siljak DD (1988)Robust Stability of Discrete Systems.Int J Control 48(5):2055–2063

    MathSciNet  MATH  Google Scholar 

  65. Smith GD (1985)Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd edn.Oxford University Press, Oxford

    MATH  Google Scholar 

  66. Basagni S, Bruschi D, Chlamtac I (1999)A Mobility-Transparent Deterministic Broadcast Mechanism for Ad Hoc Networks.IEEE/ACM Trans Netw 7(6):799–807

    Google Scholar 

  67. Kleinrock L (1975)Queueing Systems, Volume 1: Theory, 1st edn. Wiley, New York

    Google Scholar 

  68. Chlamtac I, Pinter SS (1987)Distributed Nodes Organization Algorithm for Channel Access in a Multihop Dynamic Radio Network.IEEE Trans Comput C 36(6):728–737

    Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the help of Steven Eskridge, John Hurtado,Chris Lewis, John Harrington, and Nekton Research, LLC, in implementing andtesting these algorithms on a variety of robot platforms.This work was supported in part by the Sandia National Laboratories. Sandiais a multiprogram laboratory operated by Sandia Corporation, a LockheedMartin Company, for the United States Department of Energy under contractDE–AC04–94AL85000. In addition, this research was partially funded by theInformation Processing Technology Office and Microsystems Technology Officeof the Defense Advanced Research Projects Agency.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Feddema, J.T., Schoenwald, D.A., Robinett, R.D., Byrne, R.H. (2009). Distributed Controls of Multiple Robotic Systems, An Optimization Approach. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_129

Download citation

Publish with us

Policies and ethics