Skip to main content

Earthquake Nucleation Process

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Earthquake prediction in the long, intermediate, and short terms is essential for the reduction of earthquake disasters. However, it is notpractical at present, in particular, for the intermediate and short time scales of a few days to years. This is mainly because we do not know exactlyhow and why earthquakes begin and grow larger or stop. Theoretical and laboratory studies have confirmed that earthquakes do not begin abruptly withdynamic rupture propagation. They show that a quasi‐static rupture growth precedes dynamic rupture. Thus, if we can detect thequasi‐static rupture growth, we could forecast the following dynamic rupture. A key issue is how natural earthquakes initiate. To solve thisissue, a first approach would be to investigate the very beginning parts of observed waveforms of earthquakes, since they can reflect the earthquakenucleation process from a quasi‐static to a dynamic rupture. This paper reviews...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Nucleation process:

The process in which rupture velocity accelerates from quasi‐static to dynamic. The dynamic rupture velocity almost equals the shear wave velocity.

Nucleation zone:

The portion of the fault where rupture velocity accelerates from quasi‐static to dynamic.

Initial rupture process:

The rupture process that precedes the largest slip. This term is used when the acceleration of rupture velocity is not clear. This is a wider concept that includes the earthquake nucleation process. The area where the initial rupture process occurs is called the initial rupture fault.

Slip velocity:

The dislocation velocity at a point on the fault. The rupture velocity is the velocity at which the rupture front is expanding.

Preslip model:

An earthquake source model having a detectable size nucleation zone.

Cascade model:

An earthquake source model in which smaller sub‐events successively trigger larger sub‐events. A sub‐event is the same as a small earthquake if it does not trigger a successive sub‐event.

Stress drop (static stress drop):

The amount of shear stress change at a point on the fault before and after an earthquake. It is proportional to the strain released on the fault.

Dynamic stress drop:

The difference between the initial shear stress and the minimum frictional stress at a point on the fault during fault slip.

Fault strength:

The shear stress level necessary to initiate slip at a point on the fault.

M :

Magnitude. Earthquake size computed basically from waveform amplitudes and focal distances.

Seismic moment:

The most reliable measure of earthquake size which is determined from the products of the rigidity near the fault, the amount of slip, and the area of the fault surface.

M w :

Moment magnitude. Earthquake magnitude derived from the seismic moment.

Bibliography

  1. Abercrombie R, Mori J (1994) Local observations of the onset of a largeearthquake, 28 June 1992. Landers, California. Bull Seismol Soc Am 84:725–734

    Google Scholar 

  2. Aki (1967) Scaling law of seismic spectrum. J Geophys Res72:1217–1231

    ADS  Google Scholar 

  3. Allen RM, Kanamori H (2003) The potential for earthquake early warning inSouthern California. Science 300(5620):786–789

    ADS  Google Scholar 

  4. Anderson JG, Bodin P, Brune JN, Pince J, Singh SK, Quaas R, Ohnate M (1986)Strong ground motion from the Michoacan, Mexico, earthquake. Science 233:1043–1049

    ADS  Google Scholar 

  5. Andrews DJ (1976) Rupture velocity of plane strain shear cracks. J Geophys Res81:5679–5687

    ADS  Google Scholar 

  6. Asano K, Iwata T (2006) Source process and near-source ground motions of the2005 West Off Fukuoka Prefecture earthquake. Earth Planet Space 58:93–98

    ADS  Google Scholar 

  7. Azimi SA, Kalinin AV, Kalinin VV, Pivovarov BL (1968) Impulse and transientcharacteristics of media with linear quadratic absorption laws, Izv. Earth Phys 1968(2):88–93

    Google Scholar 

  8. Bak P, Teng C (1989) Earthquakes as self-organized critical phenomenon. J Geophys Res 94:635-15–637-15

    Google Scholar 

  9. Beroza GC, Ellsworth WL (1996) Properties of the seismic nucleation phase.Tectonophysics 261:209–227

    ADS  Google Scholar 

  10. Boatwright J (1978) Detailed spectral analysis of two small New York Stateearthquakes. Bull Seismol Soc Am 68:1117–1131

    Google Scholar 

  11. Brown SR, Scholz CH (1985) Broad bandwidth study of the topography of naturalrock surfaces. J Geophys Res 90:12575–12582

    ADS  Google Scholar 

  12. Brune JN (1979) Implications of earthquake triggering and rupture propagationfor earthquake prediction based on premonitory phenomena. J Geophys Res 84:2195–2198

    ADS  Google Scholar 

  13. Cheng X, Fenglin Niu, Silver PG, Horiuchi S, Takai K, Ito H, Iio Y Similar microearthquakes observed in western Nagano, Japan and implications to rupturemechanics. J Geophys Res 112:B04306. doi:10.1029/2006JB004416

  14. Christensen DH, Ruff LJ (1986) Rupture process of the Chilean earthquake, 3March 1985. Geophys Res Lett 13:721–724

    ADS  Google Scholar 

  15. Das S, Scholz CH (1982) Theory of time-dependent rupture in the Earth. J Geophys Res 86:6039–6051

    ADS  Google Scholar 

  16. Deichman N (1997) Far-field pulse shapes from circular sources with variablerupture velocities. Bull Seismol Soc Am 87:1288–1296

    Google Scholar 

  17. Dieterich JH (1978) Preseismic fault slip and earthquake prediction. J Geophys Res 83:3940–3948

    ADS  Google Scholar 

  18. Dieterich JH (1979) Modelling of rock friction: 1 Experimental results andconstitutive equations. J Geophys Res 84:2161–2168

    ADS  Google Scholar 

  19. DieterichJH (1986) A model for the nucleation of earthquake slip. In:Earthquake source mechanics. Geophysical Monograph. Maurice Ewing Series, vol 6. Am Geophys Union, Washington DC, pp 37,36–47

    Google Scholar 

  20. Dodge DA, Beroza GC, Ellsworth WL (1996) Detailed observations of Californiaforeshock sequences: Implications for the earthquake initiation process. J Geophys Res 101(22):371–392

    Google Scholar 

  21. Ellsworth WL, Beroza GC (1995) Seismic evidence for an earthquake nucleationphase. Science 268:851–855

    ADS  Google Scholar 

  22. Ellsworth WL, Beroza GC (1998) Observation of the seismic nucleation phase inthe 1995 Ridgecrest, California sequence. Geophys Res Lett 25:401–404

    ADS  Google Scholar 

  23. Fukao Y, Furumoto M (1985) Hierarchy in earthquake size distribution. PhysEarth Planet Inter 37:149–168

    ADS  Google Scholar 

  24. Furumoto M, Nakanishi I (1983) Source times and scaling relations of largeearthquakes. J Geophys Res 88:2191–2198

    ADS  Google Scholar 

  25. Hardebeck JL, Hauksson E (2001) The crustal stress field in southernCalifornia and its implications for fault mechanics. J Geophys Res 106(21):859–882

    ADS  Google Scholar 

  26. Hiramatsu Y, Furumoto M, Nishigami K, Ohmi S (2002) Initial rupture process ofmicroearthquakes recorded by high sampling borehole seismographs at the Nojima fault, central Japan. Phys Earth Planet Inter132:269–279

    ADS  Google Scholar 

  27. Hirata M (2003) The initial rupture process of the 2000 Western TottoriEarthquake. Master Thesis, Kyoto University

    Google Scholar 

  28. Horikawa H (2006) Rupture process of the 2005 West Off Fukuoka Prefecture,Japan, earthquake. Earth Planet Space 58:87–92

    ADS  Google Scholar 

  29. Ide S, Beroza GC, Prejean SG, Ellsworth WL (2003) Apparent break in earthquakescaling due to path and site effects on deep borehole recordings. J Geophys Res 108(B5):2271; doi:10.1029/2001JB001617

    Google Scholar 

  30. Iio Y (1992) Slow initial phase of the P-wave velocity pulse generated bymicroearthquakes. Geophys Res Lett 19:477–480

    ADS  Google Scholar 

  31. Iio Y (1995) Observation of the slow initial phase generated bymicroearthquakes: Implications for earthquake nucleation and propagation. J Geophys Res 100:15333–15349

    ADS  Google Scholar 

  32. Iio Y, Ohmi S, Ikeda R, Yamamoto E, Ito H, Sato H, Kuwahara Y, Ohminato T,Shibazaki B, Ando M (1999) Slow initial phase generated by microearthquakes occurred in the Western Nagano prefecture, Japan -the source effect-. GeopysRes Lett 26(13):1969–1972

    ADS  Google Scholar 

  33. Iio Y, Kobayashi Y, Tada T (2002) Large earthquakes initiate by theacceleration of slips on the downward extensions of seismogenic faults, Earth Planet. Sci Lett 202:337–343

    Google Scholar 

  34. Iio Y, Horiuchi S, Ohmi S, Ito H, Kuwahara Y, Yamamoto E, Omura K, Miura K,Shibazaki B, Sato H (2006) Slow initial phase of microearthquakes. Program and abstracts of 2006 fall meeting of the Seismological Society of Japan, A48(in Japanese)

    Google Scholar 

  35. Ishihara Y, Fukao Y, Yamada I, Aoki H (1992) Rising slope of moment ratefunctions: the 1989 earthquakes off east coast of Honshu. Geophys Res Lett 19:873–876

    ADS  Google Scholar 

  36. Ito S (2003) Study for the initial rupture process of microearthquakes inwestern Nagano, central Japan, estimated from seismograms recorded in three boreholes. Ph D Thesis, Tohoku University (inJapanese)

    Google Scholar 

  37. Ito S, Ito H, Horiuchi S, Iio Y (2004) Local attenuation in western Nagano,central Japan, estimated from seismograms recorded in three boreholes. Geophys Res Lett 31:L20604; doi:10.1029/2004GL020745

    ADS  Google Scholar 

  38. Ito Y, Obara K, Takeda T, Shiomi K, Matsumoto T, Sekiguchi S, Hori S (2006)Initial-rupture fault, main-shock fault, and aftershock faults: Fault geometry and bends inferred from centroid moment tensor inversion of the 2005 WestOff Fukuoka Prefecture earthquake. Earth Planet Space 58:69–74

    ADS  Google Scholar 

  39. Iwata T, Sekiguchi H (2002) Source process and near-source ground motionduring the 2000 Tottori-ken Seibu earthquake (\( { M_{w}\,6.8 }\)). Reports on Assessments of Seismic local-site effects at plural test sites. MEXT,pp 231–241

    Google Scholar 

  40. Kanamori H, Anderson DL (1975) Theoretical bases for some empirical relationsin seismology. Bull Seism Soc Am 65:1073–1095

    Google Scholar 

  41. Kanamori H (1996) Initiation process of earthquakes and its implications forseismic hazard reduction strategy. Proc Natl Acad Sci 93:3726–3731

    ADS  Google Scholar 

  42. Kawanishi R, Iio Y, Yukutake Y, Katao H, Shibutani T (2006) Estimate of thestress field in the region of the 2000 Western Tottori earthquake. Program and abstracts of 2006 fall meeting of the Seismological Society of Japan, P099(in Japanese)

    Google Scholar 

  43. Kilb D, Gomberg J (1999) The initial subevent of the 1994 Northridge,California, Earthquake – is earthquake size predictable? J Seismol 3:409–420

    Google Scholar 

  44. Lay T, Kanamori H, Ruff L (1982) The asperity model and the nature of largesubduction zone earthquakes. Earthq Predict Res 1:3–71

    Google Scholar 

  45. Mandelbrot BB (1982) The fractal geometry of nature. W.H. Freeman, NewYork

    MATH  Google Scholar 

  46. Miura K, Iio Y, Yukutake Y, Takai K, Horiuchi S (2005) The feature of initialmotion for waveforms of microearthquakes in Western Nagano, Japan. Program and abstracts of 2005 fall meeting of the Seismological Society of Japan,P103. (in Japanese)

    Google Scholar 

  47. Miyake H, Iwata T, Irikura K (2003) Source characterization for broadbandground motion simulation: Kinematic heterogeneous source model and strong motion generation area. Bull Seism Soc Am93:2531–2545

    Google Scholar 

  48. Mori J, Kanamori H (1996) Initial rupture of earthquake in the 1995Ridgecrest, California sequence. Geophys Res Lett 23:2437–2440

    ADS  Google Scholar 

  49. Nakamura Y (1988) Proc World Conference on Earthquake Engineering, VII,6763

    Google Scholar 

  50. Nakatani M, Kaneshima S, Fukao Y (2000) Size-dependent microearthquakeinitiation inferred from high-gain and low-noise observations at Nikko district, Japan. J Geophys Res105(B12):28095–28110; doi:10.1029/2000JB900255

    ADS  Google Scholar 

  51. Ohmi S, Watanabe K, Shibutani T, Hirano N, Nakao S (2002) The 2000 WesternTottori Earthquake—Seismic activity revealed by the regional seismic networks. Earth Planet Space 54:819–830

    ADS  Google Scholar 

  52. Ohnaka M, Kuwahara Y, Yamamoto K, Hirasawa T (1986) Dynamic breakdown processesand the generating mechanism for high-frequency elastic radiation during stick-slip instabilities. In: Das S, Boatwright J, Scholz CH, AGU (eds)Earthquake source mechanics. Geophysical Monograph, vol 37. Maurice Ewing Series, vol 6. American Geophysical Union, Washington DC,pp 13–24

    Google Scholar 

  53. Ohnaka M, Kuwahara Y (1990) Characteristic features of local breakdown near a crack-tip in the transition zone from nucleation to unstable rupture during stick-slip shear failure. Tectonophysics175:197–220

    ADS  Google Scholar 

  54. Ohnaka M, Shen L (1999) Scaling of the shear rupture process from nucleationto dynamic propagation: Implications of geometric irregularity of the rupture surfaces. J Geophys Res 104:817–844

    ADS  Google Scholar 

  55. Ohnaka M (2000) A physical scaling relation between the size of an earthquakeand its nucleation zone size. Pure Appl Geophys 157:2259–2282

    ADS  Google Scholar 

  56. Okubo PG, Dieterich JH (1984) Effects of physical fault properties onfrictional instabilities produced on a simulated faults. J Geophys Res 89:5817–5827

    ADS  Google Scholar 

  57. Olson EL, Allen RM (2006) Is earthquake rupture deterministic? Nature442:E5–E6; doi:10.1038/nature04963

    Google Scholar 

  58. Rydelek P, Horiuchi S (2006) Is earthquake rupture deterministic? (Reply).Nature 442:E6; doi:10.1038/nature04964

    Google Scholar 

  59. Sato T (1994) Seismic radiation from circular cracks growing at variablerupture velocity. Bull Seismol Soc Am 84:1199–1215

    Google Scholar 

  60. Sato T, Hirasawa T (1973) Body wave spectra from propagating shear cracks. J Phys Earth 21:415–431

    Google Scholar 

  61. Sato T, Kanamori H (1999) Beginning of earthquakes modeled with the Griffith'sfracture criterion. Bull Seismol Soc Am 89:80–93

    Google Scholar 

  62. Sato K, Mori J (2006) Scaling relationship of initiations for moderate tolarge earthquakes. J Geophys Res 111:B05306; doi:10.1029/2005JB003613

    ADS  Google Scholar 

  63. Sato K, Mori J (2006) Relation between rupture complexity and earthquake sizefor two shallow earthquake sequences in Japan. J Geophys Res 10.1029/2005JB003613

  64. Shibazaki B, Matsu'ura M (1992) Spontaneous processes for nucleation, dynamicpropagation, and stop of earthquake rupture. Geophys Res Lett 19:1189–1192

    ADS  Google Scholar 

  65. Shibazaki B, Matsu'ura M (1995) Foreshocks and pre-events associated with thenucleation of large earthquakes. Geophys Res Lett 22(10):1305–1308; doi:10.1029/95GL01196

    ADS  Google Scholar 

  66. Shibazaki B, Matsu'ura M (1998) Transition process from nucleation tohigh-speed rupture propagation: Scaling from stick-slip experiments to natural earthquakes. Geophys J Int 132:14–30

    ADS  Google Scholar 

  67. Shibazaki B, Yoshida Y, Nakamura M, Nakamura M, Katao H (2002) Rupturenucleations in the 1995 Hyogo-ken Nanbu earthquake and its large aftershocks. Geophys J Int 149:572–588

    ADS  Google Scholar 

  68. Spudich P, Cranswick E (1984) Direct observation of rupture propagation duringthe 1979 Imperial Valley earthquake using a short-baseline accelerometer array. Bull Seismol Soc Am 74:2083–2114

    Google Scholar 

  69. Takenaka H, Nakamura T, Yamamoto Y, Toyokuni G, Kawase H (2006) Preciselocation of the fault plane and the onset of the main rupture of the 2005 West Off Fukuoka Prefecture earthquake. Earth Planets Space58:75–80

    ADS  Google Scholar 

  70. Uchide T, Ide S (2007) Development of multiscale slip inversion method and itsapplication to the 2004 Mid-Niigata Prefecture earthquake. J Geophys Res doi:10.1029/2006JB004528

  71. Uehira K, Yamada T, Shinohara M, Nakahigashi K, Miyamachi H, Iio Y, Okada T,Takahashi H, Matsuwo N, Uchida K, Kanazawa T, Shimizu H (2006) Precise aftershock distribution of the 2005 West Off Fukuoka Prefecture Earthquake(\( { Mj=7.0 } \)) using a dense onshore andoffshore seismic network. Earth Planet Space 58:1605–1610

    ADS  Google Scholar 

  72. Umeda Y (1990) High-amplitude seismic waves radiated from the bright spot ofan earthquake. Tectonophysics 175:81–92

    ADS  Google Scholar 

  73. Umeda Y (1992) The bright spot of an earthquake. Tectonophysics211:13–22

    ADS  Google Scholar 

  74. Umeda Y, Yamashita T, Tada T, Kame N (1996) Possible mechanisms of dynamicnucleation and arresting of shallow earthquake faulting. Tectonophysics 261:179–192

    ADS  Google Scholar 

  75. Yamaguchi S, H Kawakata, T Adachi, Y Umeda (2007) Features of initial processof rupture for the 2005 West off Fukuoka Prefecture Eathquake. Zisin Ser 2:241–252 (in Japanese)

    Google Scholar 

  76. Venkataraman A, Beroza GC, Ide S, Imanishi K, Ito H, Iio Y (2006) Measurementsof spectral similarity for microearthquakes in western Nagano, Japan. J Geophys Res 111:B03303; doi:10.1029/2005JB003834

    ADS  Google Scholar 

  77. Wu Y, Kanamori H, Allen R, Hauksson E (2007) Determination of earthquake earlywarning parameters, τ c and P d , for southern California. Geophys J Int (OnlineEarly Articles) doi:10.1111/j.1365-246X.2007.03430.x

  78. Wyss M, Brune J (1967) The Alaska earthquake of 28 March 1964—a complexmultiple rupture. Bull Seismol Soc Am 57:1017–1023

    Google Scholar 

Download references

Acknowledgments

The project in the Western Nagano Prefecture is a co‐operative study with Shigeki Horiuchi, Shiro Ohmi, Hisao Ito, Yasuto Kuwahara,Eiji Yamamoto, Kentaro Omura, Koichi Miura, Bun'ichiro Shibazaki, and Haruo Sato. We thank James Mori and Masumi Yamada for their critical reviews of themanuscript. This work is partly supported by JSPS.KAKENHI (19204043), Japan. We are grateful for two anonymous reviewers for their critical andthoughtful comments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Iio, Y. (2009). Earthquake Nucleation Process . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_154

Download citation

Publish with us

Policies and ethics