Skip to main content

Ecological Systems

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Ecological systems are paradigmatic examples of complex systems. Just think about thethousands of species interacting in complex ways within rich communities such as tropicalrainforests or coral reefs. The most pressing questions ecologists face deal with conceptssuch as stability, resilience, thresholds and non‐linearities which are at the core ofthe sciences of complexity. How robust are these cathedrals of biodiversity? At which ratewill they disassemble as a consequence of global change ? For example, one of the long‐standing questions in ecologyis the relationship between complexity and stability. This contribution will presenta brief review of some of the applications of the complexity sciences into the realm ofecological systems and discuss the implications for our understanding ofecosystems. Predicting the consequences of global change on biodiversity and the services itprovides will need an interdisciplinary approach in which...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Food webs:

Networks depicting who eats whom in an ecological community.

Compartments:

Groups of highly interacting nodes with few connections to nodes from other groups.

Scale-free networks:

Very heterogeneous networks in which the bulk of nodes have a few links, but a few nodes have a very large number of links.

Mutualistic networks:

Two-mode networks depicting the mutually beneficial interactions between plants and their pollinators or seed dispersers.

Connectivity correlation:

A measure of network structure that represents the correlation between the number of interactions of a node and the average number of interactions of the nodes it interacts with. A negative connectivity correlation would represent a modular network.

Species strength:

A measure of the importance of a species in terms of the total weight of its connections.

Network motifs:

Patterns of interconnections significantly over‐represented in complex networks. These may be regarded as the simple building blocks of complex networks.

Trophic cascades:

Changes in population abundance that propagate through more than one trophic link in the food chain.

Ecosystem shifts:

Sudden qualitative changes in the state of an ecosystem (i. e., from clear to turbid waters in a lake) following a continuous tuning of a variable such as nutrient load.

Deterministic chaos:

A periodic, random‐like time series generated by low dimensional, non‐linear, deterministic models.

Lyapunov exponent:

A measure of the degree of divergence of initially close trajectories in the phase space that is characteristic of deterministic chaos.

Coupled map lattice:

Dynamical system with discrete time, discrete space, and continuous state. It was first used by the physicist Kunihiko Kaneko in relation to spatiotemporal chaos and later on used in ecology as a model of spatiotemporal systems.

Interacting particle system:

Stochastic spatial models with discrete time, discrete space, and finite states. They have been used as spatially extended models of populations and epidemics, and have been widely analyzed by Richard Durrett and Simon Levin.

Metapopulation:

A population of populations maintained in a dynamical balance between local extinctions and recolonizations from nearby local populations.

Extinction thresholds:

Critical values in the amount of habitat destroyed at which a metapopulation goes extinct.

Bibliography

Primary Literature

  1. Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    ADS  Google Scholar 

  2. Amaral LA, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world networks. Proceedings of the National Academy of Science of the United States of America 97:11149–11152

    Google Scholar 

  3. Anderson RM, May RM (1991) Infectious diseases of humans. Dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  4. Ashby WR (1954) Design for a Brain. Chapman and Hall, London

    Google Scholar 

  5. Ashworth L, Aguilar R, Galetto L, Aizen MA (2004) Why do pollinator generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation? J Ecol 92:717–719

    Google Scholar 

  6. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    MathSciNet  ADS  Google Scholar 

  7. Barrat A, Barthélemy M, Pastor-Satorras V, Vespignani A (2004) The architecture of weighted complex networks. Proceedings of the National Academy of Sciences of the United States of America 101:3747–3752

    Google Scholar 

  8. Bascompte J, Jordano P (2007) Plant‐animal mutualistic networks: the architecture of biodiversity. Annual Rev Ecol Evol Syst 38:567–593

    Google Scholar 

  9. Bascompte J, Melián CJ (2005) Simple trophic modules for complex food webs. Ecology 86:2868–2873

    Google Scholar 

  10. Bascompte J, Rodríguez MA (2000) Self‐disturbance as a source of spatiotemporal heterogeneity: the case of the tallgrass prairie. J Theor Biol 204:153–164

    Google Scholar 

  11. Bascompte J, Rodríguez‐Trelles F (1998) Eradication thresholds in epidemiology, conservation biology and genetics. J Theor Biol 192:415–418

    Google Scholar 

  12. Bascompte J, Solé RV (1995) Rethinking complexity: modelling spatiotemporal dynamics in ecology. Trends Ecol Evol 10:361–366

    Google Scholar 

  13. Bascompte J, Solé RV (1996) Habitat fragmentation and extinction thresholds in spatially explicit metapopulation models. J Anim Ecol 65:465–473

    Google Scholar 

  14. Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant‐animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America 100:9383–9387

    Google Scholar 

  15. Bascompte J, Melián CJ, Sala E (2005) Interaction strength combinations and the overfishing of a marine food web. Proceedings of the National Academy of Sciences of the United States of America 102:5443–5447

    Google Scholar 

  16. Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity persistence. Science 312:431–433

    ADS  Google Scholar 

  17. Berryman AA, Millstein JA (1989) Are ecological systems chaotic: and if not why not? Trends Ecol Evol 4:26–28

    Google Scholar 

  18. Bersier L-F, Banašek‐Richter C, Cattin M-F (2002) Quantitative descriptors of food-web matrices. Ecology 83:2394–2407

    Google Scholar 

  19. Bjørnstad ON, Peltonen M, Liebhold AM, Baltensweiler W (2002) Waves of larch Budmoth outbreaks in the European Alps. Science 298:1020–1023

    Google Scholar 

  20. Camacho J, Guimerà R, Amaral LAN (2002) Robust patterns in food web structure. Physical Review Letters 88:228102

    Google Scholar 

  21. Carpenter SR, Brock WA (2006) Rising variance: a leading indicator of ecological transition. Ecology Letters 9:308–315

    Google Scholar 

  22. Carpenter SR, Kitchell JF (1996) The trophic cascade in lakes. Cambridge University Press, Cambridge

    Google Scholar 

  23. Chesson P (1994) Multispecies competition in variable environments. Theor Popul Biol 45:227–276

    MATH  Google Scholar 

  24. Chesson PL, Ellner S (1989) Invasibility and stochastic boundedness in monotonic competition models. J Math Biol 27:117–138

    MathSciNet  MATH  Google Scholar 

  25. Cohen JE (1978) Food Webs and Niche Space. Princeton University Press, Princeton

    Google Scholar 

  26. Connell JH (1961) Influence of interspecific competition and other factors on distribution of barnacle Chthamalus stellatus. Ecology 42:710–723

    Google Scholar 

  27. Connell JH (1978) Diversity in tropical rain forests and coral reefs- high diversity of trees and corals is maintained only in a non‐equilibrium state. Science 199:1302–1310

    ADS  Google Scholar 

  28. Costantino RF, Cushing JM, Dennis B, Desharnais RA (1995) Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375:227–230

    ADS  Google Scholar 

  29. Costantino RF, Desharnais RA, Cushing JM, Dennis B (1997) Chaotic dynamics in an insect population. Science 275:389–391

    Google Scholar 

  30. Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences, USA 99:12917–12922

    ADS  Google Scholar 

  31. Durrett R, Levin SA (1994) Stochastic spatial models: a user's guide to ecological applications. Philos Trans R Soc London B 343:329–350

    ADS  Google Scholar 

  32. Egerton FN (2007) Understanding food chains and food webs, 1700–1979. Bull Ecol Soc Am 88:50–69

    Google Scholar 

  33. Ellner SP, Turchin P (1995) Chaos in a nosiy world: new methods and evidence from time‐series analysis. Am Nat 145:343–375

    Google Scholar 

  34. Erdös P, Rényi A (1959) On Random Graphs. Pub Math 6:290–297

    Google Scholar 

  35. Fagan WF, Hurd LE (1994) Hatch density variation of a generalist arthropod predator: population consequences and community impact. Ecology 75:2022–2032

    Google Scholar 

  36. Feigenbaum M (1978) Quantitative universality for a class of non‐linear transformations. J Stat Phys 19:25–52

    MathSciNet  ADS  MATH  Google Scholar 

  37. Fortuna MA, Bascompte J (2006) Habitat loss and the structure of plant‐animal mutualistic networks. Ecol Lett 9:281–286

    Google Scholar 

  38. Glass L, Mackey MC (1990) From Clocks to Chaos. The Rhytms of Life. Princeton University Press, Princeton

    Google Scholar 

  39. Guimarães PR Jr, de Aguiar MAM, Bascompte J, Jordano P, dos Reis SF (2005) Random initial conditions in small Barabasi–Albert networks and deviations from the scale-free behavior. Phys Rev E 71:037101

    Google Scholar 

  40. Guimarrães PR Jr, Machado G, de Aguiar MAM, Jordano P, Bascompte J, Pineiro A, dos Reis SF (2007) Build-up mechanisms determining the topology of mutualistic networks. J Theor Biol 249:181–189

    Google Scholar 

  41. Guimarrães PR Jr, Sazima C, Furtado dos Reis S, Sazima I (2007) The nested structure of marine cleaning symbiosis: is it like flowers and bees? Biol Lett 3:51–54

    Google Scholar 

  42. Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900

    Google Scholar 

  43. Gurney WSC, Nisbet RM (1998) Ecological Dynamics. Oxford University Press, Oxford

    Google Scholar 

  44. Hanski I (1999) Metapopulation Ecology. Oxford University Press, Oxford

    Google Scholar 

  45. Hanski I, Moilanen A, Gyllenberg M (1996) Minimum viable metapopulation size. Am Nat 147:527–541

    Google Scholar 

  46. Hassell MP, Lawton JN, May RM (1976) Patterns of dynamics behaviour in saingle‐speceis populations. J Anim Ecol 45:471–486

    Google Scholar 

  47. Hassell MP, Comins HN, May RM (1991) Spatial structure and chaos in insect population dynamics. Nature 353:255–258

    ADS  Google Scholar 

  48. Hassell MP, Comins HN, May RM (1994) Species coexistence and self‐organizing spatial dynamics. Nature 370:290–292

    ADS  Google Scholar 

  49. Hastings A (1993) Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology 74:1362–1372

    Google Scholar 

  50. Hastings A, Higgins K (1994) Persistence of transients in spatially‐structured ecological models. Science 263:1133–1136

    ADS  Google Scholar 

  51. Hastings A, Hom CL, Ellner S, Turchin P, Godfray HCJ (1993) Chaos in ecology: is mother nature a strange attractor? Annual Rev Ecol Syst 24:1–33

    Google Scholar 

  52. Hughes TP (1994) Catastrophes, phase‐shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Google Scholar 

  53. Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant‐animal interactions. Ecol Lett 6:69–81

    Google Scholar 

  54. Kaneko K (1984) Period‐doubling of Kink‐antiking patterns, quasi‐periodicity in Antiferro‐like structures and spatial intermittency in coupled map lattices: towards a prelude to a Field Theory of Chaos. Prog Theor Phys 72:480–486

    ADS  MATH  Google Scholar 

  55. Kaneko K (ed) (1992) Special issue on Coupled Map Lattices. Chaos 2

    Google Scholar 

  56. Kleinen T, Held H, Petschel-Held G (2003) The potential role of spectral properties in detecting thresholds in the Earth system: application to the thermohaline circulation. Ocean Dyn 53:53–63

    ADS  Google Scholar 

  57. Kokkoris GD, Troumbis AY, Lawton JH (1999) Patterns of species interaction strength in assembled theoretical competition communities. Ecol Lett 2:70–74

    Google Scholar 

  58. Krause AE, Frank KA, Mason DM, Ulanowicz RE, Tayor WW (2003) Compartments revealed in food-web structure. Nature 426:282–285

    ADS  Google Scholar 

  59. Kuramoto Y (1984) Chemical Oscillations, Chaos and Turbulence. Springer, Berlin

    Google Scholar 

  60. Lafferty K, Dobson A, Kurtis A (2006) Parasites dominate food web links. Proceedings of the National Academy of Sciences of the United States of America 103:11211–11216

    ADS  Google Scholar 

  61. Lande R (1987) Extinction thresholds in demographic models of territorial populations. Am Nat 130:624–635

    Google Scholar 

  62. Lande R, Engen S, Saether BE (2003) Stochastic Population Dynamics in Ecology and Conservation. Oxford University Press, Oxford

    Google Scholar 

  63. Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Google Scholar 

  64. Levin SA, Durrett R (1996) From individuals to epidemics. Philos Trans R Soc London B 351:1615–1621

    ADS  Google Scholar 

  65. Levin SA, Segel LA (1976) Hypothesis for the origin of planktonic patchiness. Nature 259:659

    ADS  Google Scholar 

  66. Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  67. Lindenman RL (1942) The trophic dynamic aspect of ecology. Ecology 23:399–418

    Google Scholar 

  68. Lotka AJ (1925) Elements of Physical Biology. Williams and Wilkins, Baltimore

    MATH  Google Scholar 

  69. MacArthur RM (1964) Environmental factors affecting bird species diversity. Am Nat 98:387–397

    Google Scholar 

  70. Margalef R (1958) Information theory in ecology. Gen Syst 3:36–71

    Google Scholar 

  71. Margalef R (1968) Perspectives in theoretical ecology. Chicago University Press, Chicago

    Google Scholar 

  72. Maron JL, Harrison S (1997) Spatial pattern formation in an insect host‐parasotoid system. Science 278:1619–1621

    ADS  Google Scholar 

  73. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913

    ADS  Google Scholar 

  74. May RM (1972) Will a large complex system be stable? Nature 238:413–414

    ADS  Google Scholar 

  75. May RM (1974) Biological populations with non‐overlapping generations: stable points, stable cycles, and chaos. Science 186:645–647

    ADS  Google Scholar 

  76. May RM, Oster GF (1976) Bifurcations and dynamics complexity in simple ecological models. Am Nat 110:573–599

    Google Scholar 

  77. McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798

    ADS  Google Scholar 

  78. Melián CJ, Bascompte J (2002) Complex networks: two ways to be robust? Ecol Lett 5:705–708

    Google Scholar 

  79. Melián CJ, Bascompte J (2004) Food web cohesion. Ecology 85:352–358

    Google Scholar 

  80. Memmott J, Waser NM (2002) Integration of alien plants into a native flower‐pollination visitation web. Proceedings of the Royal Society Series B 269:2395–2399

    Google Scholar 

  81. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alton U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    ADS  Google Scholar 

  82. Morales CL, Aizen MA (2006) Invasive mutualisms and the structure of plant‐pollinator interactions in the temperate forests of the north-west Patagonia, Argentina. J Ecol 94:171–180

    Google Scholar 

  83. Murdoch WW (1994) Population regulation in theory and practice. Ecology 75:271–287

    Google Scholar 

  84. Murdoch WW, Chesson J, Chesson PL (1985) Biological control in theory and practice. Am Nat 125:344–366

    Google Scholar 

  85. Murray JD (1989) Mathematical Biology. Springer, Heidelberg

    MATH  Google Scholar 

  86. Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283

    ADS  Google Scholar 

  87. Nee S (1994) How populations persist. Nature 367:123–124

    ADS  Google Scholar 

  88. Neutel A, Heesterbeek JAP, Ruiter PC (2002) Stability in real food webs: Weal links in long loops. Science 296:1120–1123

    ADS  Google Scholar 

  89. Nicholson AJ, Bailey VA (1935) The balance of animal populations. 1st Proceedings of the Zoological Society of London 3:551–598

    Google Scholar 

  90. Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1:102–117

    Google Scholar 

  91. Olesen JM, Eskildsen L, Venkatasamy S (2002) Invasion of pollination networks on oceanic islands: importance of invader complexes and epidemic super generalists. Divers Distrib 8:181–192

    Google Scholar 

  92. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. submitted to Proceedings of the National Academy of Sciences of the United States of America

    Google Scholar 

  93. Pascual M (1993) Diffusion‐induced chaos in a spatial predator‐prey system. Proceedings of the Royal Society of London B 251:1–7

    Google Scholar 

  94. Pascual M, Dunne JA (eds) (2006) Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford University Press, Oxford

    Google Scholar 

  95. Paine RT (1969) A note on trophic complexity and community stability. Am Nat 103:91–93

    Google Scholar 

  96. Paine RT (1992) Food-web analysis through field measurements of per capita interaction strength. Nature 355:73–75

    ADS  Google Scholar 

  97. Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F Jr (1998) Fishing down marine food. webs. Science 279:860–863

    ADS  Google Scholar 

  98. Pimm SL (1979) The structure of food webs. Theor Popul Biol 16:144–158

    Google Scholar 

  99. Pimm SL (1982) Food Webs. University of Chicago Press, Chicago

    Google Scholar 

  100. Pimm SL, Lawton JH (1980) Are food webs divided into compartments? J Anim Ecol 49:879–898

    Google Scholar 

  101. Prill RJ, Iglesias PA, Levchenko A (2005) Dynamic properties of network motifs contribute to biological network organization. PLoS Biology 3811:e343

    Google Scholar 

  102. Raffaelli D, Hall SJ (1992) Compartments and predation in an esturine food web. J Anim Ecol 61:551–560

    Google Scholar 

  103. Raffaelli D, Hall S (1995) Integration of Patterns and Dynamics. In: Polis G, Winemiller K (eds) Food Webs. Chapman and Hall, New York, pp 185–191

    Google Scholar 

  104. Ranta E, Kaitala V (1997) Travelling waves in vole population dynamics. Nature 390:456–456

    ADS  Google Scholar 

  105. Rasmussen DR, Bohr T (1987) Temporal chaos and spatial disorder. Phys Lett A 125:107, 125:107–110

    ADS  Google Scholar 

  106. Schaffer WM, Kot M (1986) Chaos in ecological systems: the coals that Newcastle forgot. Trends Ecol Evol 1:58–63

    Google Scholar 

  107. Scheffer M, Carpenter SR, Foley J, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    ADS  Google Scholar 

  108. Schroeder MM (1991) Fractals, Chaos, Power Laws. Freeman, New York

    MATH  Google Scholar 

  109. Sibly RM, Barker D, Hone J, Pagel M (2007) On the stability of populations of mammals, birds, fish and insects. Ecol Lett 10:970–976

    Google Scholar 

  110. Simon H (1955) On a class of skewed distribution functions. Biometrika 42:425–440

    MathSciNet  MATH  Google Scholar 

  111. Solé RV, Bascompte J (2006) Self‐organization in complex ecosystems. Princeton University Press, Princeton

    Google Scholar 

  112. Solé RV, Montoya JM (2001) Complexity and fragility in ecological networks. Proceedings of the Royal Society of London Series B 268:2039–2045

    Google Scholar 

  113. Solé RV, Valls J (1991) Order and chaos in a two‐dimensional Lotka–Volterra coupled map lattice. Phys Lett A 153:330–336

    Google Scholar 

  114. Solé RV, Bascompte J, Valls J (1992) Stability and complexity of spatially extended two‐species competition. J Theor Biol 159:469–480

    Google Scholar 

  115. Solé RV, Valls J, Bascompte J (1992) Spiral waves, chaos and multiple attractors in lattice models of interacting populations. Phys Lett A 166:123–128

    Google Scholar 

  116. Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344:734–741

    ADS  Google Scholar 

  117. Sugihara G, Schoenly K, Trombla A (1989) Scale invariance in food web properties. Science 245:48–52

    ADS  Google Scholar 

  118. Taylor PJ (2005) Unruly Complexity: Ecology, Interpretation, Engagement. University of Chicago Press, Chicago

    Google Scholar 

  119. Thompson JN (1994) The Coevolutionary Process. University of Chicago Press, Chicago

    Google Scholar 

  120. Tilman D, Wedin D (1991) Oscillations and chaos in the dynnamics of a perennial grass. Nature 353:653–655

    ADS  Google Scholar 

  121. Turing A (1952) On the chemical basis of morphogenesis. Philos Trans R Soc Series B 237:37–72

    ADS  Google Scholar 

  122. Turner MG, Gardner RH, Dale VH, O'Neill RV (1989) Predicting the spread of disturbances across heterogeneous landscapes. Oikos 55:121–129

    Google Scholar 

  123. Ulanowicz RE, Wolf WF (1991) Ecosystem flow networks: loaded dice. Math Biosci 103:45–68

    MathSciNet  MATH  Google Scholar 

  124. van Nes EH, Scheefer M (2003) Alternative attractors may boost uncertainty and sensitivity in ecological models. Ecol Model 159:117–124

    Google Scholar 

  125. Volterra V (1926) Variations and fluctuations of the number of individuals in animal species living together. Translation In: Chapman RN (1931) Animal Ecology. Wiley, New York, pp 409–448

    Google Scholar 

  126. Wiener N (1948) Cybernetics or control and communication in the animal and the machine. Wiley, New York

    Google Scholar 

  127. Wootton JT (1997) Estimates and tests of per‐capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecol Monogr 67:45

    Google Scholar 

Books and Reviews

  1. Hastings A, Hom CL, Ellner S, Turchin P, Godfray HCJ (1993) Chaos in ecology: is mother nature a strange attractor? Annual Rev Ecol Syst 24:1–33

    Google Scholar 

  2. Levin SA (1999) Fragile Dominion: Complexity and the Commons. Perseus Publishing, Reading

    Google Scholar 

  3. May RM (1973) Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton

    Google Scholar 

  4. Prigogine I, Stangers I (1984) Order Out of Chaos. Bantam Doubleday Dell Publishing Group, Toronto

    Google Scholar 

  5. Stewart I (1989) Does God play dice? The mathematics of chaos. Basil Blackwell, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Bascompte, J. (2009). Ecological Systems. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_163

Download citation

Publish with us

Policies and ethics