Skip to main content

Definition of the Subject

Thermodynamics and statistical mechanics are among the most important formalisms in contemporary physics. They have overwhelming and intertwinedapplications in science and technology. They essentially rely on two basic concepts, namely energy and entropy . The mathematical expression that is used for the first one is well known to be nonuniversal; indeed, it depends on whether we are say in classical, quantum, or relativistic regimes. The second concept, andvery specifically its connection with the microscopic world, has been considered during well over one century as essentially unique and universalas a physical concept. Although some mathematical generalizations of the entropy have been proposed during thelast forty years, they have frequently been considered as mere practical expressions for disciplines such as cybernetics and control theory, with noparticular physical interpretation. What we have witnessed during the last two decades is the growth, among...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Absolute temperature:

Denoted T.

Clausius entropy:

Also called thermodynamic entropy. Denoted S.

Boltzmann–Gibbs entropy:

Basis of Boltzmann–Gibbs statistical mechanics. This entropy, denoted \( { S_\mathrm{BG} } \), is additive. Indeed, for two probabilistically independent subsystems A and B, it satisfies \( S_\mathrm{BG}(A+B)= S_\mathrm{BG}(A) + S_\mathrm{BG}(B) \).

Nonadditive entropy:

It usually refers to the basis of nonextensive statistical mechanics. This entropy, denoted S q , is nonadditive for \( { q \ne 1 } \). Indeed, for two probabilistically independent subsystems A and B, it satisfies \( { S_{q}(A+B)\ne S_{q}(A)+S_{q}(B) \;(q \ne 1) } \). For historical reasons, it is frequently (but inadequately) referred to as nonextensive entropy.

q‑logarithmic and q‑exponential functions:

Denoted \( { \ln_q x\, (\ln_1 x = \ln x) } \), and \( { \text{e}_q^x\, (\text{e}_1^x = \text{e}^x) } \), respectively.

Extensive system:

So called for historical reasons. A more appropriate name would be additive system. It is a system which, in one way or another, relies on or is connected to the (additive) Boltzmann–Gibbs entropy. Its basic dynamical and/or structural quantities are expected to be of the exponential form. In the sense of complexity, it may be considered a simple system.

Nonextensive system:

So called for historical reasons. A more appropriate name would be nonadditive system. It is a system which, in one way or another, relies on or is connected to a (nonadditive) entropy such as \( { S_q (q \ne 1) } \). Its basic dynamical and/or structural quantities are expected to asymptotically be of the power-law form. In the sense of complexity, it may be considered a complex system.

Bibliography

  1. Abe S (2000) Axioms and uniqueness theorem for Tsallis entropy. Phys Lett A271:74–79

    MathSciNet  ADS  MATH  Google Scholar 

  2. Abe S (2002) Stability of Tsallis entropy and instabilities of Renyi andnormalized Tsallis entropies: A basis for q‑exponential distributions. Phys Rev E66:046134

    MathSciNet  ADS  Google Scholar 

  3. Abe S, Rajagopal AK (2001) Nonadditive conditional entropy and its significancefor local realism. Physica A 289:157–164

    MathSciNet  ADS  MATH  Google Scholar 

  4. Abe S, Suzuki N (2003) Law for the distance between successive earthquakes. J Geophys Res (Solid Earth) 108(B2):2113

    ADS  Google Scholar 

  5. Abe S, Suzuki N (2004) Scale-free network of earthquakes. Europhys Lett65:581–586

    ADS  Google Scholar 

  6. Abe S, Suzuki N (2005) Scale-free statistics of time interval between successiveearthquakes. Physica A 350:588–596

    ADS  Google Scholar 

  7. Abe S, Suzuki N (2006) Complex network of seismicity. Prog Theor Phys Suppl162:138–146

    ADS  Google Scholar 

  8. Abe S, Suzuki N (2006) Complex‐network description ofseismicity. Nonlinear Process Geophys 13:145–150

    ADS  Google Scholar 

  9. Abe S, Sarlis NV, Skordas ES, Tanaka H, Varotsos PA (2005) Optimality of naturaltime representation of complex time series. Phys Rev Lett 94:170601

    ADS  Google Scholar 

  10. Abe S, Tirnakli U, Varotsos PA (2005) Complexity of seismicity andnonextensive statistics. Europhys News 36:206–208

    ADS  Google Scholar 

  11. Abul AY-M (2005) Nonextensive random matrix theory approach to mixedregular‐chaotic dynamics. Phys Rev E 71:066207

    ADS  Google Scholar 

  12. Albert R, Barabasi AL (2000) Phys Rev Lett85:5234–5237

    ADS  Google Scholar 

  13. Alemany PA, Zanette DH (1994) Fractal random walks from a variationalformalism for Tsallis entropies. Phys Rev E 49:R956–R958

    ADS  Google Scholar 

  14. Ananos GFJ, Tsallis C (2004) Ensemble averages and nonextensivity at the edgeof chaos of one‐dimensional maps. Phys Rev Lett 93:020601

    ADS  Google Scholar 

  15. Ananos GFJ, Baldovin F, Tsallis C (2005) Anomalous sensitivity to initialconditions and entropy production in standard maps: Nonextensive approach. Euro Phys J B 46:409–417

    ADS  Google Scholar 

  16. Andrade RFS, Pinho STR (2005) Tsallis scaling and the long-range Ising chain:A transfer matrix approach. Phys Rev E 71:026126

    ADS  Google Scholar 

  17. Andricioaei I, Straub JE (1996) Generalized simulated annealing algorithmsusing Tsallis statistics: Application to conformational optimization of a tetrapeptide. Phys Rev E 53:R3055–R3058

    ADS  Google Scholar 

  18. Anteneodo C, Plastino AR (1999) Maximum entropy approach to stretchedexponential probability distributions. J Phys A 32:1089–1097

    MathSciNet  ADS  MATH  Google Scholar 

  19. Anteneodo C, Tsallis C (1998) Breakdown of exponential sensitivity to initialconditions: Role of the range of interactions. Phys Rev Lett 80:5313–5316

    ADS  Google Scholar 

  20. Anteneodo C, Tsallis C (2003) Multiplicative noise: A mechanism leadingto nonextensive statistical mechanics. J Math Phys 44:5194–5203

    MathSciNet  ADS  MATH  Google Scholar 

  21. Antoniazzi A, Fanelli D, Barre J, Chavanis P-H, Dauxois T, Ruffo S (2007)Maximum entropy principle explains quasi‐stationary states in systems with long-range interactions: The example of the Hamiltonian mean-fieldmodel. Phys Rev E 75:011112

    ADS  Google Scholar 

  22. Arevalo R, Garcimartin A, Maza D (2007) A non‐standard statisticalapproach to the silo discharge. Eur Phys J Special Topics 143:191–197

    ADS  Google Scholar 

  23. Assis PC Jr, da Silva LR, Lenzi EK, Malacarne LC, Mendes RS (2005) Nonlineardiffusion equation, Tsallis formalism and exact solutions. J Math Phys 46:123303

    MathSciNet  ADS  Google Scholar 

  24. Assis PC Jr, da Silva PC, da Silva LR, Lenzi EK, Lenzi MK (2006) Nonlineardiffusion equation and nonlinear external force: Exact solution. J Math Phys 47:103302

    MathSciNet  ADS  Google Scholar 

  25. Ausloos M, Ivanova K (2003) Dynamical model and nonextensive statisticalmechanics of a market index on large time windows. Phys Rev E 68:046122

    ADS  Google Scholar 

  26. Baldovin F, Orlandini E (2006) Incomplete equilibrium in long-rangeinteracting systems. Phys Rev Lett 97:100601

    ADS  Google Scholar 

  27. Baldovin F, Robledo A (2002) Sensitivity to initial conditions at bifurcationsin one‐dimensional nonlinear maps: Rigorous nonextensive solutions. Europhys Lett 60:518–524

    MathSciNet  ADS  Google Scholar 

  28. Baldovin F, Robledo A (2002) Universal renormalization‐group dynamics atthe onset of chaos in logistic maps and nonextensive statistical mechanics. Phys Rev E 66:R045104

    ADS  Google Scholar 

  29. Baldovin F, Robledo A (2004) Nonextensive Pesin identity. Exactrenormalization group analytical results for the dynamics at the edge of chaos of the logistic map. Phys Rev E 69:R045202

    MathSciNet  ADS  Google Scholar 

  30. Baldovin F, Robledo A (2005) Parallels between the dynamics at thenoise‐perturbed onset of chaos in logistic maps and the dynamics of glass formation. Phys Rev E 72:066213

    ADS  Google Scholar 

  31. Baldovin F, Moyano LG, Majtey AP, Robledo A, Tsallis C (2004) Ubiquity ofmetastable‐to‐stable crossover in weakly chaotic dynamical systems. Physica A 340:205–218

    MathSciNet  ADS  Google Scholar 

  32. Beck C, Cohen EGD (2003) Superstatistics. Physica A322:267–275

    MathSciNet  ADS  MATH  Google Scholar 

  33. Beck C, Schlogl F (1993) Thermodynamics of Chaotic Systems. CambridgeUniversity Press, Cambridge

    Google Scholar 

  34. Beck C, Cohen EGD, Rizzo S (2005) Atmospheric turbulence andsuperstatistics. Europhys News 36:189–191

    ADS  Google Scholar 

  35. Ben A Hamza (2006) Nonextensive information‐theoretic measure for imageedge detection. J Electron Imaging 15:013011

    ADS  Google Scholar 

  36. Batle J, Plastino AR, Casas M, Plastino A (2004) Inclusion relations amongseparability criteria. J Phys A 37:895–907

    MathSciNet  ADS  MATH  Google Scholar 

  37. Batle J, Casas M, Plastino AR, Plastino A (2005) Quantum entropies andentanglement. Intern J Quantum Inf 3:99–104

    Google Scholar 

  38. Bernui A, Tsallis C, Villela T (2007) Deviation from Gaussianity in the cosmicmicrowave background temperature fluctuations. Europhys Lett 78:19001

    ADS  Google Scholar 

  39. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Phys Rep424:175–308

    MathSciNet  ADS  Google Scholar 

  40. Bologna M, Tsallis C, Grigolini P (2000) Anomalous diffusion associated withnonlinear fractional derivative Fokker‐Planck‐like equation: Exact time‐dependent solutions. Phys Rev E62:2213–2218

    ADS  Google Scholar 

  41. Boltzmann L (1896) Vorlesungen über Gastheorie. Part II, ch I, paragraph1. Leipzig, p 217; (1964) Lectures on Gas Theory (trans: Brush S). Univ. California Press, Berkeley

    Google Scholar 

  42. Boon JP, Tsallis C (eds) (2005) Nonextensive Statistical Mechanics: NewTrends, New Perspectives. Europhysics News 36(6):185–231

    Google Scholar 

  43. Borges EP (2004) A possible deformed algebra and calculus inspired innonextensive thermostatistics. Physica A 340:95–101

    MathSciNet  ADS  Google Scholar 

  44. Borges EP, Roditi I (1998) A family of non‐extensiveentropies. Phys Lett A 246:399–402

    MathSciNet  ADS  MATH  Google Scholar 

  45. Borges EP, Tsallis C (2002) Negative specific heat ina Lennard–Jones-like gas with long-range interactions. Physica A 305:148–151

    MathSciNet  ADS  MATH  Google Scholar 

  46. Borges EP, Tsallis C, Ananos GFJ, Oliveira PMC (2002) Nonequilibriumprobabilistic dynamics at the logistic map edge of chaos. Phys Rev Lett 89:254103

    ADS  Google Scholar 

  47. Burlaga LF, Vinas AF (2004) Multiscale structure of the magnetic field andspeed at 1 AU during the declining phase of solar cycle 23 described by a generalized Tsallis PDF. J Geophys Res Space – Phys109:A12107

    Google Scholar 

  48. Burlaga LF, Vinas AF (2005) Triangle for the entropic index q of non‐extensive statistical mechanics observed by Voyager 1 in the distant heliosphere. Physica A356:375–384

    ADS  Google Scholar 

  49. Burlaga LF, Ness NF, Acuna MH (2006) Multiscale structure of magnetic fieldsin the heliosheath. J Geophys Res Space – Phys 111:A09112

    Google Scholar 

  50. Borland L (2002) A theory of non‐gaussian option pricing. QuantFinance 2:415–431

    MathSciNet  Google Scholar 

  51. Borland L (2002) Closed form option pricing formulas based ona non‐Gaussian stock price model with statistical feedback. Phys Rev Lett 89:098701

    ADS  Google Scholar 

  52. Borland L, Bouchaud J-P (2004) A non‐Gaussian option pricing modelwith skew. Quant Finance 4:499–514

    MathSciNet  Google Scholar 

  53. Cabral BJC, Tsallis C (2002) Metastability and weak mixing in classicallong-range many‐rotator system. Phys Rev E 66:065101(R)

    ADS  Google Scholar 

  54. Calabrese P, Cardy J (2004) JSTAT – J Stat Mech Theory ExpP06002

    Google Scholar 

  55. Callen HB (1985) Thermodynamics and An Introduction to Thermostatistics, 2ndedn. Wiley, New York

    MATH  Google Scholar 

  56. Chavanis PH (2006) Lynden‐Bell and Tsallis distributions for the HMFmodel. Euro Phys J B 53:487–501

    ADS  Google Scholar 

  57. Chavanis PH (2006) Quasi‐stationary states and incomplete violentrelaxation in systems with long-range interactions. Physica A 365:102–107

    ADS  Google Scholar 

  58. Canosa N, Rossignoli R (2005) General non‐additive entropic forms andthe inference of quantum density operstors. Physica A 348:121–130

    MathSciNet  ADS  Google Scholar 

  59. Cannas SA, Tamarit FA (1996) Long-range interactions and nonextensivity inferromagnetic spin models. Phys Rev B 54:R12661–R12664

    ADS  Google Scholar 

  60. Caruso F, Tsallis C (2007) Extensive nonadditive entropy in quantum spinchains. In: Abe S, Herrmann HJ, Quarati P, Rapisarda A, Tsallis C (eds) Complexity, Metastability and Nonextensivity. American Institute of Physics Conference Proceedings, vol 965. New York, pp 51–59

    Google Scholar 

  61. Caruso F, Tsallis C (2008) Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics. Phys Rev E 78:021101

    MathSciNet  ADS  Google Scholar 

  62. Caruso F, Pluchino A, Latora V, Vinciguerra S, Rapisarda A (2007) Analysis ofself‐organized criticality in the Olami–Feder–Christensen model and in real earthquakes. Phys Rev E 75:055101(R)

    ADS  Google Scholar 

  63. Campa A, Giansanti A, Moroni D (2002) Metastable states in a class oflong-range Hamiltonian systems. Physica A 305:137–143

    ADS  MATH  Google Scholar 

  64. Csiszar I (1978) Information measures: A critical survey. In:Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, and the European Meeting ofStatisticians, 1974. Reidel, Dordrecht

    Google Scholar 

  65. Cohen EGD (2005) Boltzmann and Einstein: Statistics and dynamics– An unsolved problem. Boltzmann Award Lecture at Statphys‐Bangalore‐2004. Pramana 64:635–643

    ADS  Google Scholar 

  66. Condat CA, Rangel J, Lamberti PW (2002) Anomalous diffusion in thenonasymptotic regime. Phys Rev E 65:026138

    MathSciNet  ADS  Google Scholar 

  67. Coraddu M, Meloni F, Mezzorani G, Tonelli R (2004) Weak insensitivity toinitial conditions at the edge of chaos in the logistic map. Physica A 340:234–239

    MathSciNet  ADS  Google Scholar 

  68. Costa UMS, Lyra ML, Plastino AR, Tsallis C (1997) Power-law sensitivity toinitial conditions within a logistic‐like family of maps: Fractality and nonextensivity. Phys Rev E56:245–250

    ADS  Google Scholar 

  69. Curado EMF (1999) General aspects of the thermodynamical formalism. Braz JPhys 29:36–45

    ADS  Google Scholar 

  70. Curado EMF, Nobre FD (2003) Derivation of nonlinear Fokker‐Planckequations by means of approximations to the master equation. Phys Rev E 67:021107

    MathSciNet  ADS  Google Scholar 

  71. Curado EMF, Tsallis C (1991) Generalized statistical mechanics: connectionwith thermodynamics. Phys J A 24:L69-L72; [Corrigenda: 24:3187 (1991); 25:1019 (1992)]

    MathSciNet  ADS  Google Scholar 

  72. Cvejic N, Canagarajah CN, Bull DR (2006) Image fusionmetric based on mutual information and Tsallis entropy. Electron Lett 42:11

    Google Scholar 

  73. Daniels KE, Beck C, Bodenschatz E (2004) Defect turbulence and generalizedstatistical mechanics. Physica D 193:208–217

    MathSciNet  ADS  MATH  Google Scholar 

  74. Daroczy Z (1970) Information and Control 16:36

    MathSciNet  MATH  Google Scholar 

  75. de Albuquerque MP, Esquef IA, Mello ARG, de Albuquerque MP (2004) Image thresholding using Tsallis entropy. Pattern Recognition Lett 25:1059–1065

    Google Scholar 

  76. de Meneses MDS, da Cunha SD, Soares DJB, da Silva LR (2006) In: Sakagami M,Suzuki N, Abe S (eds) Complexity and Nonextensivity: New Trends in Statistical Mechanics. Prog Theor Phys Suppl162:131–137

    ADS  Google Scholar 

  77. de Moura FABF, Tirnakli U, Lyra ML (2000) Convergence to the criticalattractor of dissipative maps: Log‐periodic oscillations, fractality and nonextensivity. Phys Rev E 62:6361–6365

    ADS  Google Scholar 

  78. de Oliveira HP, Soares ID, Tonini EV (2004) Role of the nonextensivestatistics in a three‐degrees of freedom gravitational system. Phys Rev D 70:084012

    ADS  Google Scholar 

  79. de Souza AMC, Tsallis C (1997) Student's t- and r‐distributions:Unified derivation from an entropic variational principle. Physica A 236:52–57

    ADS  Google Scholar 

  80. de Souza J, Moyano LG, Queiros SMD (2006) On statistical properties of tradedvolume in financial markets. Euro Phys J B 50:165–168

    ADS  Google Scholar 

  81. Douglas P, Bergamini S, Renzoni F (2006) Tunable Tsallis distributions indissipative optical lattices. Phys Rev Lett 96:110601

    ADS  Google Scholar 

  82. Fermi E (1936) Thermodynamics. Dover, New York, p 53

    Google Scholar 

  83. Ferri GL, Martinez S, Plastino A (2005) Equivalence of the four versions ofTsallis' statistics. J Stat Mech P04009

    Google Scholar 

  84. Ferro F, Lavagno A, Quarati P (2004) Non‐extensive resonant reactionrates in astrophysical plasmas. Euro Phys J A 21:529–534

    ADS  Google Scholar 

  85. Fulco UL, da Silva LR, Nobre FD, Rego HHA, Lucena LS (2003) Effects of sitedilution on the one‐dimensional long-range bond‐percolation problem. Phys Lett A 312:331–335

    MathSciNet  ADS  MATH  Google Scholar 

  86. Frank TD (2005) Nonlinear Fokker–Planck Equations –Fundamentals and Applications. Springer, Berlin

    MATH  Google Scholar 

  87. Gervino G, Lavagno A, Quarati P (2005) CNOreaction rates and chemical abundance variations in dense stellar plasma. J Phys G 31:S1865–S1868

    Google Scholar 

  88. Gibbs JW (1902) Elementary Principles in Statistical Mechanics –Developed with Especial Reference to the Rational Foundation of Thermodynamics. C Scribner, New York; Yale University Press, New Haven, 1948; OX BowPress, Woodbridge, Connecticut, 1981

    Google Scholar 

  89. Ginsparg P, Moore G (1993) Lectures on 2D Gravity and 2D String Theory.Cambridge University Press, Cambridge; hep-th/9304011, p 65

    Google Scholar 

  90. Grigera JR (1996) Extensive and non‐extensivethermodynamics. A molecular dyanamic test. Phys Lett A 217:47–51

    ADS  Google Scholar 

  91. Hasegawa H (2006)Nonextensive aspects of small-world networks. Physica A 365:383–401

    ADS  Google Scholar 

  92. Havrda J, Charvat F (1967) Kybernetika 3:30

    MathSciNet  MATH  Google Scholar 

  93. Hernandez H-S, Robledo A (2006) Fluctuating dynamics at thequasiperiodic onset of chaos, Tsallis q‑statistics and Mori's q-phase thermodynamics. Phys A 370:286–300

    MathSciNet  Google Scholar 

  94. Hilhorst HJ, Schehr G (2007) A note on q‑Gaussians and non‐Gaussians in statistical mechanics. J Stat Mech P06003

    Google Scholar 

  95. Jang S, Shin S, Pak Y (2003) Replica‐exchange method using thegeneralized effective potential. Phys Rev Lett 91:058305

    ADS  Google Scholar 

  96. Jersblad J, Ellmann H, Stochkel K, Kastberg A, Sanchez L-P, Kaiser R(2004) Non‐Gaussian velocity distributions in optical lattices. Phys Rev A 69:013410

    ADS  Google Scholar 

  97. Jund P, Kim SG, Tsallis C (1995) Crossover from extensive to nonextensivebehavior driven by long-range interactions. Phys Rev B 52:50–53

    ADS  Google Scholar 

  98. Kaniadakis G (2001) Non linear kinetics underlying generalizedstatistics. Physica A 296:405–425

    MathSciNet  ADS  MATH  Google Scholar 

  99. Kaniadakis G, Lissia M, Scarfone AM (2004) Deformed logarithms andentropies. Physica A 340:41–49

    MathSciNet  ADS  Google Scholar 

  100. Khinchin AI (1953) Uspekhi Matem. Nauk 8:3 (Silverman RA, Friedman MD,trans. Math Found Inf Theory. Dover, New York)

    MATH  Google Scholar 

  101. Kronberger T, Leubner MP, van Kampen E (2006) Dark matter density profiles:A comparison of nonextensive statistics with N‑body simulations. Astron Astrophys453:21–25

    ADS  MATH  Google Scholar 

  102. Latora V, Baranger M (1999) Kolmogorov‐Sinai entropy rate versusphysical entropy. Phys Rev Lett 82:520–523

    ADS  Google Scholar 

  103. Latora V, Baranger M, Rapisarda A, Tsallis C (2000) The rate of entropyincrease at the edge of chaos. Phys Lett A 273:97–103

    MathSciNet  ADS  MATH  Google Scholar 

  104. Latora V, Rapisarda A, Tsallis C (2001) Non‐Gaussian equilibrium ina long-range Hamiltonian system. Phys Rev E 64:056134

    ADS  Google Scholar 

  105. Lemes MR, Zacharias CR, Dal Pino A Jr (1997) Generalized simulatedannealing: Application to silicon clusters. Phys Rev B 56:9279–9281

    ADS  Google Scholar 

  106. Lenzi EK, Anteneodo C, Borland L (2001) Escape time in anomalous diffusivemedia. Phys Rev E 63:051109

    ADS  Google Scholar 

  107. Lesche B (1982) Instabilities of Rényi entropies. J Stat Phys27:419–422

    MathSciNet  ADS  Google Scholar 

  108. Lindhard J, Nielsen V (1971) Studies in statistical mechanics. Det KongeligeDanske Videnskabernes Selskab Matematisk‐fysiske Meddelelser (Denmark) 38(9):1–42

    Google Scholar 

  109. Lissia M, Quarati P (2005) Nuclear astrophysical plasmas: Ion distributionsand fusion rates. Europhys News 36:211–214

    ADS  Google Scholar 

  110. Lutz E (2003) Anomalous diffusion and Tsallis statistics in an opticallattice. Phys Rev A 67:051402(R)

    ADS  Google Scholar 

  111. Lyra ML, Tsallis C (1998) Nonextensivity and multifractality inlow‐dimensional dissipative systems. Phys Rev Lett 80:53–56

    ADS  Google Scholar 

  112. Mann GM, Tsallis C (eds) (2004) Nonextensive Entropy – InterdisciplinaryApplications. Oxford University Press, New York

    MATH  Google Scholar 

  113. Marsh JA, Fuentes MA, Moyano LG, Tsallis C (2006) Influence of globalcorrelations on central limit theorems and entropic extensivity. Physica A 372:183–202

    MathSciNet  ADS  Google Scholar 

  114. Martin S, Morison G, Nailon W, Durrani T (2004) Fast and accurate imageregistration using Tsallis entropy and simultaneous perturbation stochastic approximation. Electron Lett 40(10):20040375

    Google Scholar 

  115. Masi M (2005) A step beyond Tsallis and Renyi entropies. Phys Lett A338:217–224

    MathSciNet  ADS  MATH  Google Scholar 

  116. Mayoral E, Robledo A (2004) Multifractality and nonextensivity at the edgeof chaos of unimodal maps. Physica A 340:219–226

    MathSciNet  ADS  Google Scholar 

  117. Mayoral E, Robledo A (2005) Tsallis' qindex and Mori's q phase transitions at edge of chaos. Phys Rev E 72:026209

    MathSciNet  ADS  Google Scholar 

  118. Montemurro MA (2001) Beyond the Zipf–Mandelbrot law in quantitativelinguistics. Physica A 300:567–578

    ADS  MATH  Google Scholar 

  119. Montemurro MA, Tamarit F, Anteneodo C (2003) Aging in aninfinite‐range Hamiltonian system of coupled rotators. Phys Rev E 67:031106

    ADS  Google Scholar 

  120. Moret MA, Pascutti PG, Bisch PM, Mundim MSP, Mundim KC (2006) Classical andquantum conformational analysis using Generalized Genetic Algorithm. Phys A 363:260–268

    Google Scholar 

  121. Moyano LG, Anteneodo C (2006) Diffusive anomalies in a long-rangeHamiltonian system. Phys Rev E 74:021118

    MathSciNet  ADS  Google Scholar 

  122. Moyano LG, Majtey AP, Tsallis C (2005) Weak chaos in large conservativesystem – Infinite‐range coupled standard maps. In: Beck C, Benedek G, Rapisarda A, Tsallis C (eds) Complexity, Metastability andNonextensivity. World Scientific, Singapore, pp 123–127

    Google Scholar 

  123. Moyano LG, Majtey AP, Tsallis C (2006) Weak chaos and metastability ina symplectic system of many long-range‐coupled standard maps. Euro Phys J B 52:493–500

    ADS  Google Scholar 

  124. Moyano LG, Tsallis C, Gell-Mann M (2006) Numerical indications ofa q‑generalised central limit theorem. Europhys Lett 73:813–819

    MathSciNet  ADS  Google Scholar 

  125. Nivanen L, Le Mehaute A, Wang QA (2003) Generalized algebra withina nonextensive statistics. Rep Math Phys 52:437–444

    MathSciNet  ADS  MATH  Google Scholar 

  126. Nobre FD, Tsallis C (2003) Classical infinite‐range‐interactionHeisenberg ferromagnetic model: Metastability and sensitivity to initial conditions. Phys Rev E 68:036115

    MathSciNet  ADS  Google Scholar 

  127. Nobre FD, Tsallis C (2004) Metastable states of the classical inertialinfinite‐range‐interaction Heisenberg ferromagnet: Role of initial conditions. Physica A 344:587–594

    MathSciNet  ADS  Google Scholar 

  128. Nobre FD, Curado EMF, Rowlands G (2004) A procedure for obtaininggeneral nonlinear Fokker‐Planck equations. Physica A 334:109–118

    MathSciNet  ADS  Google Scholar 

  129. Oliveira HP, Soares ID (2005) Dynamics of black hole formation: Evidence fornonextensivity. Phys Rev D 71:124034

    MathSciNet  ADS  Google Scholar 

  130. Penrose O (1970) Foundations of Statistical Mechanics: A DeductiveTreatment. Pergamon Press, Oxford, p 167

    MATH  Google Scholar 

  131. Plastino AR, Plastino A (1995) Non‐extensive statistical mechanics andgeneralized Fokker‐Planck equation. Physica A 222:347–354

    MathSciNet  ADS  Google Scholar 

  132. Pluchino A, Rapisarda A (2006) Metastability in the Hamiltonian Mean Fieldmodel and Kuramoto model. Physica A 365:184–189

    ADS  Google Scholar 

  133. Pluchino A, Rapisarda A (2006) Glassy dynamics and nonextensive effects inthe HMF model: the importance of initial conditions. In: Sakagami M, Suzuki N, Abe S (eds) Complexity andNonextensivity: New Trends in Statistical Mechanics. Prog Theor Phys Suppl 162:18–28

    ADS  Google Scholar 

  134. Pluchino A, Latora V, Rapisarda A (2004) Glassy dynamics in the HMFmodel. Physica A 340:187–195

    ADS  Google Scholar 

  135. Pluchino A, Latora V, Rapisarda A (2004) Dynamical anomalies and the role ofinitial conditions in the HMFmodel. Physica A 338:60–67

    ADS  Google Scholar 

  136. Pluchino A, Rapisarda A, Latora V (2005) Metastability and anomalousbehavior in the HMF model: Connections to nonextensive thermodynamics and glassy dynamics. In: Beck C, Benedek G, Rapisarda A, Tsallis C (eds) Complexity,Metastability and Nonextensivity. World Scientific, Singapore, pp 102–112

    Google Scholar 

  137. Pluchino A, Rapisarda A, Tsallis C (2007) Nonergodicity and central limitbehavior in long-range Hamiltonians. Europhys Lett 80:26002

    MathSciNet  ADS  Google Scholar 

  138. Prato D, Tsallis C (1999) Nonextensive foundation of Levydistributions. Phys Rev E 60:2398–2401

    ADS  Google Scholar 

  139. Queiros SMD (2005) On non‐Gaussianity and dependence in financial intime series: A nonextensive approach. Quant Finance 5:475–487

    MathSciNet  MATH  Google Scholar 

  140. Queiros SMD, Tsallis C (2007) Nonextensivestatistical mechanics and central limit theorems II – Convolution of q‑independent randomvariables. In: Abe S, Herrmann HJ, Quarati P, Rapisarda A, Tsallis C (eds) Complexity, Metastability and Nonextensivity. American Institute of PhysicsConference Proceedings, vol 965. New York, pp 21–33

    Google Scholar 

  141. Queiros SMD, Moyano LG, de Souza J, Tsallis C (2007) A nonextensiveapproach to the dynamics of financial observables. Euro Phys J B 55:161–168

    ADS  MATH  Google Scholar 

  142. Rapisarda A, Pluchino A (2005) Nonextensive thermodynamics and glassybehavior. Europhys News 36:202–206; Erratum: 37:25 (2006)

    ADS  Google Scholar 

  143. Rapisarda A, Pluchino A (2005) Nonextensive thermodynamics and glassybehaviour in Hamiltonian systems. Europhys News 36:202–206; Erratum: 37:25 (2006)

    ADS  Google Scholar 

  144. Rego HHA, Lucena LS, da Silva LR, Tsallis C (1999) Crossover from extensiveto nonextensive behavior driven by long-range \( { d=1 } \) bond percolation. Phys A 266:42–48

    Google Scholar 

  145. Renyi A (1961) In: Proceedings of the Fourth Berkeley Symposium, 1:547University California Press, Berkeley; Renyi A (1970) Probability theory. North‐Holland, Amsterdam

    Google Scholar 

  146. Robledo A (2004) Aging at the edge of chaos: Glassy dynamics andnonextensive statistics. Physica A 342:104–111

    ADS  Google Scholar 

  147. Robledo A (2004) Universal glassy dynamics at noise‐perturbed onset ofchaos: A route to ergodicity breakdown. Phys Lett A 328:467–472

    ADS  MATH  Google Scholar 

  148. Robledo A (2004) Criticality in nonlinear one‐dimensional maps: RGuniversal map and nonextensive entropy. Physica D 193:153–160

    MathSciNet  ADS  MATH  Google Scholar 

  149. Robledo A (2005) Intermittency at critical transitions and aging dynamics atedge of chaos. Pramana‐J Phys 64:947–956

    ADS  Google Scholar 

  150. Robledo A (2005) Critical attractors and q‑statistics. Europhys News 36:214–218

    ADS  Google Scholar 

  151. Robledo A (2006) Crossover from critical to chaotic attractor dynamics inlogistic and circle maps. In: Sakagami M, Suzuki N, Abe S (eds) Complexity and Nonextensivity: New Trends in Statistical Mechanics. Prog Theor Phys Suppl162:10–17

    MathSciNet  ADS  Google Scholar 

  152. Robledo A, Baldovin F, Mayoral E (2005) Two stories outsideBoltzmann‐Gibbs statistics: Mori's q‑phase transitions and glassy dynamics at the onset of chaos. In: BeckC, Benedek G, Rapisarda A, Tsallis C (eds) Complexity, Metastability and Nonextensivity. World Scientific, Singapore,p 43

    Google Scholar 

  153. RodriguezA, Schwammle V, Tsallis C (2008) Strictly and asymptoticallyscale-invariant probabilistic models of N correlated binary randomvariables havin q‑Gaussians as N -> infinity Limitingdistributions. J Stat Mech P09006

    Google Scholar 

  154. Rohlf T, Tsallis C (2007) Long-range memory elementary 1D cellular automata:Dynamics and nonextensivity. Physica A 379:465–470

    ADS  Google Scholar 

  155. Rossignoli R, Canosa N (2003) Violation of majorization relations inentangled states and its detection by means of generalized entropic forms. Phys Rev A 67:042302

    ADS  Google Scholar 

  156. Rossignoli R, Canosa N (2004) Generalized disorder measure and the detectionof quantum entanglement. Physica A 344:637–643

    MathSciNet  ADS  Google Scholar 

  157. Salinas SRA, Tsallis C (eds) (1999) Nonextensive Statistical Mechanics andThermodynamics. Braz J Phys 29(1)

    Google Scholar 

  158. Sampaio LC, de Albuquerque MP, de Menezes FS (1997) Nonextensivity andTsallis statistic in magnetic systems. Phys Rev B 55:5611–5614

    ADS  Google Scholar 

  159. Santos RJV (1997) Generalization of Shannon' s theorem for Tsallisentropy. J Math Phys 38:4104–4107

    MathSciNet  ADS  MATH  Google Scholar 

  160. Sato Y, Tsallis C (2006) In: Bountis T, Casati G, Procaccia I (eds)Complexity: An unifying direction in science. Int J Bif Chaos 16:1727–1738

    MathSciNet  MATH  Google Scholar 

  161. Schutzenberger PM (1954) Contributions aux applications statistiques de latheorie de l' information. Publ Inst Statist Univ Paris 3:3

    MathSciNet  Google Scholar 

  162. Shannon CE (1948) A Mathematical Theory of Communication. Bell SystTech J 27:379–423; 27:623–656; (1949) The Mathematical Theory of Communication. University of Illinois Press,Urbana

    MathSciNet  MATH  Google Scholar 

  163. Sharma BD, Mittal DP (1975) J Math Sci10:28

    MathSciNet  Google Scholar 

  164. Serra P, Stanton AF, Kais S, Bleil RE (1997) Comparison study of pivotmethods for global optimization. J Chem Phys 106:7170–7177

    ADS  Google Scholar 

  165. Soares DJB, Tsallis C, Mariz AM, da Silva LR (2005) Preferential Attachmentgrowth model and nonextensive statistical mechanics. Europhys Lett 70:70–76

    MathSciNet  ADS  Google Scholar 

  166. Son WJ, Jang S, Pak Y, Shin S (2007) Folding simulations with novelconformational search method. J Chem Phys 126:104906

    ADS  Google Scholar 

  167. Stigler SM (1999) Statistics on the table – The history ofstatistical concepts and methods. Harvard University Press, Cambridge

    MATH  Google Scholar 

  168. Silva AT, Lenzi EK, Evangelista LR, Lenzi MK, da Silva LR (2007) Fractionalnonlinear diffusion equation, solutions and anomalous diffusion. Phys A 375:65–71

    MathSciNet  Google Scholar 

  169. Tamarit FA, Anteneodo C (2005) Relaxation and aging in long-rangeinteracting systems. Europhys News 36:194–197

    ADS  Google Scholar 

  170. Tamarit FA, Cannas SA, Tsallis C (1998) Sensitivity to initial conditionsand nonextensivity in biological evolution. Euro Phys J B 1:545–548

    ADS  Google Scholar 

  171. Thistleton W, Marsh JA, Nelson K, Tsallis C (2006) unpublished

    Google Scholar 

  172. Thurner S (2005) Europhys News 36:218–220

    ADS  Google Scholar 

  173. Thurner S, Tsallis C (2005)Nonextensiveaspects of self‐organizedscale-free gas-like networks. Europhys Lett 72:197–204

    ADS  Google Scholar 

  174. Tirnakli U, Ananos GFJ, Tsallis C (2001) Generalization of theKolmogorov–Sinai entropy: Logistic – like and generalized cosine maps at the chaos threshold. Phys Lett A289:51–58

    ADS  MATH  Google Scholar 

  175. Tirnakli U, Beck C, Tsallis C (2007) Central limit behavior of deterministicdynamical systems. Phys Rev E 75:040106(R)

    ADS  Google Scholar 

  176. Tirnakli U, Tsallis C, Lyra ML (1999) Circular‐like maps: Sensitivityto the initial conditions, multifractality and nonextensivity. Euro Phys J B 11:309–315

    ADS  Google Scholar 

  177. Tirnakli U, Tsallis C (2006) Chaos thresholds of the z‑logistic map: Connection between the relaxation and average sensitivity entropic indices. Phys Rev E73:037201

    MathSciNet  ADS  Google Scholar 

  178. Tisza L (1961) Generalized Thermodynamics. MIT Press, Cambridge,p 123

    Google Scholar 

  179. Tonelli R, Mezzorani G, Meloni F, Lissia M, Coraddu M (2006) Entropyproduction and Pesin-like identity at the onset of chaos. Prog Theor Phys 115:23–29

    MathSciNet  ADS  Google Scholar 

  180. Toscano F, Vallejos RO, Tsallis C (2004) Random matrix ensembles fromnonextensive entropy. Phys Rev E 69:066131

    MathSciNet  ADS  Google Scholar 

  181. Tsallis AC, Tsallis C, Magalhaes ACN, Tamarit FA (2003) Human and computerlearning: An experimental study. Complexus 1:181–189

    Google Scholar 

  182. Tsallis C Regularly updated bibliography athttp://tsallis.cat.cbpf.br/biblio.htm

  183. Tsallis C (1988) Possible generalization of Boltzmann–Gibbsstatistics. J Stat Phys 52:479–487

    MathSciNet  ADS  MATH  Google Scholar 

  184. Tsallis C (2004) What should a statistical mechanics satisfy to reflectnature? Physica D 193:3–34

    MathSciNet  ADS  MATH  Google Scholar 

  185. Tsallis C (2004) Dynamical scenario for nonextensive statisticalmechanics. Physica A 340:1–10

    MathSciNet  ADS  Google Scholar 

  186. Tsallis C (2005) Is the entropy S q extensive or nonextensive? In: Beck C, Benedek G, Rapisarda A, Tsallis C (eds) Complexity, Metastability and Nonextensivity. World Scientific,Singapore

    Google Scholar 

  187. Tsallis C (2005) Nonextensive statistical mechanics, anomalous diffusion andcentral limit theorems. Milan J Math 73:145–176

    MathSciNet  MATH  Google Scholar 

  188. Tsallis C, Bukman DJ (1996) Anomalous diffusion in the presence of externalforces: exact time‐dependent solutions and their thermostatistical basis. Phys Rev E 54:R2197–R2200

    ADS  Google Scholar 

  189. Tsallis C, Queiros SMD (2007) Nonextensivestatistical mechanics and central limit theorems I – Convolution of independent random variables and q‑product. In: Abe S, Herrmann HJ, Quarati P, Rapisarda A, Tsallis C (eds) Complexity, Metastability and Nonextensivity. American Institute of PhysicsConference Proceedings, vol 965. New York, pp 8–20

    Google Scholar 

  190. Tsallis C, Souza AMC (2003) Constructing a statistical mechanics forBeck-Cohen superstatistics. Phys Rev E 67:026106

    ADS  Google Scholar 

  191. Tsallis C, Stariolo DA (1996) Generalized simulated annealing. Phys A233:395–406; A preliminary version appeared (in English) as Notas de Fisica/CBPF 026 (June 1994)

    Google Scholar 

  192. Tsallis C, Levy SVF, de Souza AMC, Maynard R (1995)Statistical‐mechanical foundation of the ubiquity of Levy distributions in nature. Phys Rev Lett 75:3589–3593; Erratum: (1996) Phys Rev Lett77:5442

    MathSciNet  ADS  MATH  Google Scholar 

  193. Tsallis C, Mendes RS, Plastino AR (1998) The role of constraints withingeneralized nonextensive statistics. Physica A 261:534–554

    Google Scholar 

  194. Tsallis C, Bemski G, Mendes RS(1999) Is re‐association in foldedproteins a case of nonextensivity? Phys Lett A 257:93–98

    ADS  Google Scholar 

  195. Tsallis C, Lloyd S, Baranger M (2001) Peres criterion for separabilitythrough nonextensive entropy. Phys Rev A 63:042104

    ADS  Google Scholar 

  196. Tsallis C, Anjos JC, Borges EP (2003) Fluxes of cosmic rays:A delicately balanced stationary state. Phys Lett A 310:372–376

    ADS  Google Scholar 

  197. Tsallis C, Anteneodo C, Borland L, Osorio R (2003) Nonextensive statisticalmechanics and economics. Physica A 324:89–100

    MathSciNet  ADS  MATH  Google Scholar 

  198. Tsallis C, Mann GM, Sato Y (2005) Asymptotically scale‐invariantoccupancy of phase space makes the entropy S q extensive. ProcNatl Acad Sci USA 102:15377–15382

    MathSciNet  ADS  MATH  Google Scholar 

  199. Tsallis C, Mann GM, Sato Y (2005) Extensivity and entropy production. In:Boon JP, Tsallis C (eds) Nonextensive Statistical Mechanics: New Trends, New perspectives. Europhys News 36:186–189

    ADS  Google Scholar 

  200. Tsallis C, Rapisarda A, Pluchino A, Borges EP (2007) On thenon‐Boltzmannian nature of quasi‐stationary states in long-range interacting systems. Physica A 381:143–147

    ADS  Google Scholar 

  201. Tsekouras GA, Tsallis C (2005) Generalized entropy arising froma distribution of q‑indices. Phys Rev E 71:046144

    MathSciNet  ADS  Google Scholar 

  202. Umarov S, Tsallis C (2007) Multivariate generalizations ofthe q–central limit theorem. cond-mat/0703533

    Google Scholar 

  203. Umarov S, Tsallis C, Steinberg S (2008) On a q‑centrallimit theorem consistent with nonextensive statistical mechanics. Milan J Math 76. doi:10.1007/s00032-008-0087-y

    Google Scholar 

  204. Umarov S, Tsallis C, Gell-Mann M, Steinberg S (2008) Symmetric (q, α)‑stable distributions. Part I: First representation. cond-mat/0606038v2

    Google Scholar 

  205. Umarov S, Tsallis C, Gell-Mann M, Steinberg S (2008) Symmetric (q, α)‑stable distributions. Part II: Second representation. cond-mat/0606040v2

    Google Scholar 

  206. Upadhyaya A, Rieu J-P, Glazier JA, Sawada Y (2001) Anomalous diffusion andnon‐Gaussian velocity distribution of Hydra cells in cellular aggregates. Physica A 293:549–558

    ADS  Google Scholar 

  207. Vajda I (1968) Kybernetika 4:105 (in Czech)

    MathSciNet  MATH  Google Scholar 

  208. Varotsos PA, Sarlis NV, Tanaka HK, Skordas ES (2005) Some properties of theentropy in the natural time. Phys Rev E 71:032102

    ADS  Google Scholar 

  209. Wehrl A (1978) Rev Modern Phys 50:221

    MathSciNet  ADS  Google Scholar 

  210. Weinstein YS, Lloyd S, Tsallis C (2002) Border between between regular andchaotic quantum dynamics. Phys Rev Lett 89:214101

    ADS  Google Scholar 

  211. Weinstein YS, Tsallis C, Lloyd S (2004) On the emergence of nonextensivityat the edge of quantum chaos. In: Elze H-T (ed) Decoherence and Entropy in Complex Systems. Lecture notes in physics, vol 633. Springer, Berlin,pp 385–397

    Google Scholar 

  212. White DR, Kejzar N, Tsallis C, Farmer JD, White S (2005) A generativemodel for feedback networks. Phys Rev E 73:016119

    ADS  Google Scholar 

  213. Wilk G, Wlodarczyk Z (2004) Acta Phys Pol B35:871–879

    ADS  Google Scholar 

  214. Wu JL, Chen HJ (2007) Fluctuation in nonextensive reaction‐diffusionsystems. Phys Scripta 75:722–725

    MATH  Google Scholar 

  215. Yamano T (2004) Distribution of the Japanese posted land price and thegeneralized entropy. Euro Phys J B 38:665–669

    ADS  Google Scholar 

  216. Zanette DH, Alemany PA (1995) Thermodynamics of anomalous diffusion. PhysRev Lett 75:366–369

    ADS  Google Scholar 

Download references

Acknowledgments

Among the very many colleagues towards which I am deeply grateful for profound and long‐lasting comments along many years, it is a must to explicitly thank S. Abe, E.P. Borges, E.G.D. Cohen, E.M.F. Curado, M. Gell-Mann, R.S. Mendes, A. Plastino, A.R. Plastino, A.K. Rajagopal, A. Rapisarda and A. Robledo.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Tsallis, C. (2009). Entropy. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_172

Download citation

Publish with us

Policies and ethics