Skip to main content

Ergodic Theory: Basic Examples and Constructions

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of theSubject

Measure‐preserving systems are a common modelof processes which evolve in time and for which the rulesgoverning the time evolution don't change. For example, inNewtonian mechanics the planets in a solar system undergomotion according to Newton's laws of motion: the planets movebut the underlying rule governing the planets' motion remainsconstant. The model adopted here is to consider thetime‐evolution as a transformation (either a mapin discrete time or a flow in continuous time) ona probability space or more generally a measurespace. This is the setting of the subject called ergodictheory. Applications of this point of view include the areas ofstatistical physics, classical mechanics, number theory,population dynamics, statistics, information theory andeconomics. The purpose of this chapter is to presenta flavor of the diverse range of examples ofmeasure‐preserving transformations which have playeda role in the development and application of ergodic theoryand...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

•:

A transformation T of a measure space \( { (X,\mathcal{B}, \mu) } \) is measure‐preserving if \( { \mu (T^{-1} A)=\mu (A) } \) for all measurable \( { A\in \mathcal{B} } \).

•:

A measure‐preserving transformation \( { (X,\mathcal{B},\mu,T) } \) is ergodic if \( { T^{-1}(A)=A } \) (mod μ) implies \( { \mu(A)=0 } \) or \( { \mu(A^c)=0 } \) for each measurable set \( { A \in \mathcal{B} } \).

•:

A measure‐preserving transformation \( { (X,\mathcal{B},\mu,T) } \) of a probability space is weak‐mixing if \( \lim_{n\to \infty} \frac{1}{n} \sum_{i=0}^{n-1} |\mu(T^{-i} A\cap B)-\mu(A)\mu(B)| =0 \) for all measurable sets \( { A,B\in \mathcal{B} } \).

A measure‐preserving transformation \( { (X,\mathcal{B},\mu,T) } \) of a probability space is strong‐mixing if \( \lim_{n\to \infty} \mu (T^{-n} A\cap B) =\mu(A)\mu(B) \) for all measurable sets \( { A,B\in \mathcal{B} } \).

•:

A continuous transformation T of a compact metric space X is uniquely ergodic if there is only one T‑invariant Borel probability measure on X. A continous transformation of a topological space X is topologically mixing for any two open sets \( { U, V \subset X } \) there exists \( { N > 0 } \)such that \( { T^{-n}(U) \cap V \neq \emptyset }\), for each \( { n \geq N } \).

•:

Suppose \( { (X,\mathcal{B},\mu) } \) is a probability space. A finite partition \( { \mathcal{P} } \) of X is a finite collection of disjoint (mod μ, i. e., up to sets of measure 0) measurable sets \( { \{P_1,\dots, P_n\} } \) such that \( { X=\cup P_i } \) (mod μ). The entropy of \( { \mathcal{P} } \) with respect to μ is \( { H(\mathcal{P})=-\sum_i \mu(P_i)\ln \mu(P_i) } \) (other bases are sometimes used for the logarithm).

•:

The metric (or measure‐theoretic) entropy of T with respect to \( { \mathcal{P} } \) is \( h_{\mu} (T,\mathcal{P})=\lim_{n\to\infty} \frac{1}{n} H(\mathcal{P} \vee \dots \vee T^{-n+1}(\mathcal{P})) \), where \( { \mathcal{P} \vee \dots \vee T^{-n+1}(\mathcal{P}) } \) is the partition of X into sets of points with the same coding with respect to \( { \mathcal{P} } \) under T i, \( { i=0,\dots, n-1 } \). That is x, y are in the same set of the partition \( { \mathcal{P} \vee \dots \vee T^{-n+1}(\mathcal{P}) } \) if and only if \( { T^i (x) } \) and \( { T^i (y) } \) lie in the same set of the partition \( { \mathcal{P} } \) for \( { i=0,\dots,n-1 } \).

•:

The metric entropy \( { h_{\mu}(T) } \) of \( { (X,\mathcal{B},\mu,T) } \) is the supremum of \( { h_{\mu} (T,\mathcal{P}) } \) over all finite measurable partitions \( { \mathcal{P} } \).

•:

If T is a continuous transformation of a compact metric space X, then the topological entropy of T is the supremum of the metric entropies \( { h_{\mu} (T) } \), where the supremum is taken over all T‑invariant Borel probability measures.

•:

A system \( { (X, \mathcal{B},\mu,T) } \) is loosely Bernoulli if it is isomorphic to the first‐return system to a subset of positive measure of an irrational rotation or a (positive or infinite entropy) Bernoulli system.

•:

Two systems are spectrally isomorphic if the unitary operators that they induce on their L 2 spaces are unitarily equivalent.

•:

smooth dynamical system consists of a differentiable manifold M and a differentiable map \( { f\colon M \to M } \). The degree of differentiability may be specified.

•:

Two submanifolds S 1, S 2 of a manifold M intersect transversely at \( { p\in M } \) if \( { T_p(S_1)+T_p (S_2)=T_p (M) } \).

•:

An (ϵ-) small C r perturbation of a C r map f of a manifold M is a map g such that \( { d_{C^r}(f,g)<\epsilon } \) i. e.the distance between f and g is less than ϵ in the C r topology.

•:

A map T of an interval \( { I=[a,b] } \) is piecewise smooth (C k for \( { k\ge 1 } \)) if there is a finite set of points \( a=x_1<x_2<\dots<x_n=b \) such that \( T |(x_i,x_{i+1}) \) is C k for each i. The degree of differentiability may be specified.

•:

A measure μ on a measure space \( { (X,\mathcal{B}) } \) is absolutely continuous with respect to a measure ν on \( { (X,\mathcal{B}) } \) if \( { \nu(A)=0 } \) implies \( { \mu(A)=0 } \) for all measurable \( { A\in \mathcal{B} } \).

•:

A Borel measure μ on a Riemannian manifold M is absolutely continuous if it is absolutely continuous with respect to the Riemannian volume on M.

•:

A measure μ on a measure space \( { (X,\mathcal{B}) } \) is equivalent to a measure ν on \( { (X,\mathcal{B}) } \) if μ is absolutely continuous with respect to ν and ν is absolutely continuous with respect to μ.

Bibliography

Primary Literature

  1. Aaronson J (1997) An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, vol 50. American Mathematical Society, Providence. MR 1450400 (99d:28025)

    Google Scholar 

  2. Anosov DV (1967) Geodesic flows on closed riemannian manifolds of negative curvature. Trudy Mat Inst Steklov 90:209. MR 0224110 (36 #7157)

    MathSciNet  Google Scholar 

  3. Arnol′d VI (1963) Small denominators and problems of stability of motion in classical and celestial mechanics. Uspehi Mat Nauk 18(6 (114)):91–192. MR 0170705 (30 #943)

    Google Scholar 

  4. Bailey S, Keane M, Petersen K, Salama IA (2006) Ergodicity of the adic transformation on the euler graph. Math Proc Cambridge Philos Soc 141(2):231–238. MR 2265871 (2007m:37010)

    MathSciNet  MATH  Google Scholar 

  5. Baladi V (2000) Positive transfer operators and decay of correlations. Advanced Series in Nonlinear Dynamics, vol 16. World Scientific Publishing Co Inc, River Edge. MR 1793194 (2001k:37035)

    Google Scholar 

  6. Benedicks M, Carleson L (1985) On iterations of \( 1-ax(X, \mathcal{B},\mu) 2 \) on \( { (-1,1) } \). Ann Math (2) 122(1):1–25. MR 799250 (87c:58058)

    Google Scholar 

  7. Benedicks M, Carleson L (1991) The dynamics of the hénon map. Ann Math (2) 133(1):73–169. MR 1087346 (92d:58116)

    MathSciNet  Google Scholar 

  8. Benedicks M, Young LS (1993) Sinaĭ-bowen-ruelle measures for certain hénon maps. Invent Math 112(3):541–576. MR 1218323 (94e:58074)

    MathSciNet  ADS  MATH  Google Scholar 

  9. Bertrand-Mathis A (1986) Développement en base θ; répartition modulo un de la suite \( { (x\theta(X,\mathcal{B},\mu) n)\sb {n\geq 0} } \); langages codés et θ-shift. Bull Soc Math France 114(3):271–323. MR 878240 (88e:11067)

    Google Scholar 

  10. Billingsley P (1978) Ergodic Theory and Information. Robert E. Krieger Publishing Co, Huntington, N.Y., reprint of the 1965 original. MR 524567 (80b:28017)

    Google Scholar 

  11. Bissinger BH (1944) A generalization of continued fractions. Bull Amer Math Soc 50:868–876. MR 0011338 (6,150h)

    MathSciNet  MATH  Google Scholar 

  12. Blanchard F (1989) β‑expansions and symbolic dynamics. Theoret Comput Sci 65(2):131–141. MR 1020481 (90j:54039)

    MathSciNet  MATH  Google Scholar 

  13. Blanchard F, Hansel G (1986) Systèmes codés. Theoret Comput Sci 44(1):17–49. MR 858689 (88m:68029)

    MathSciNet  MATH  Google Scholar 

  14. Blanchard F, Hansel G (1986) Systèmes codés et limites de systèmes sofiques. C R Acad Sci Paris Sér I Math 303(10):475–477. MR 865864 (87m:94009)

    MathSciNet  MATH  Google Scholar 

  15. Blanchard F, Hansel G (1991) Sofic constant-to-one extensions of subshifts of finite type. Proc Amer Math Soc 112(1):259–265. MR 1050016 (91m:54050)

    MathSciNet  MATH  Google Scholar 

  16. Boshernitzan M, Galperin G, Krüger T, Troubetzkoy S (1998) Periodic billiard orbits are dense in rational polygons. Trans Amer Math Soc 350(9):3523–3535. MR 1458298 (98k:58179)

    Google Scholar 

  17. Boshernitzan MD (1992) Billiards and rational periodic directions in polygons. Amer Math Monthly 99(6):522–529. MR 1166001 (93d:51043)

    MathSciNet  MATH  Google Scholar 

  18. Bowen R (1970) Markov partitions for axiom A diffeomorphisms. Amer J Math 92:725–747. MR 0277003 (43 #2740)

    MathSciNet  ADS  MATH  Google Scholar 

  19. Bowen R (1975) Equilibrium states and the ergodic theory of Anosov diffeomorphisms. In: Lecture notes in mathematics, vol 470. Springer, Berlin. MR 0442989 (56 #1364)

    Google Scholar 

  20. Boyarsky A, Góra P (1997) Laws of chaos: Invariant measures and dynamical systems in one dimension. Probability and its Applications. Birkhäuser, Boston. MR 1461536 (99a:58102)

    Google Scholar 

  21. Brin MI, Pesin JB (1974) Partially hyperbolic dynamical systems. Izv Akad Nauk SSSR Ser Mat 38:170–212. MR 0343316 (49 #8058)

    MathSciNet  MATH  Google Scholar 

  22. Bunimovich LA (1974) The ergodic properties of certain billiards. Funkcional Anal i Priložen 8(3):73–74. MR 0357736 (50 #10204)

    Google Scholar 

  23. Bunimovich LA (1979) On the ergodic properties of nowhere dispersing billiards. Comm Math Phys 65(3):295–312. MR 530154 (80h:58037)

    MathSciNet  ADS  MATH  Google Scholar 

  24. Burns K, Pugh C, Shub M, Wilkinson A (2001) Recent results about stable ergodicity. In: Smooth ergodic theory and its applications, Seattle, WA, 1999. Proc Sympos Pure Math, vol 69. Amer Math Soc, Providence, RI, pp 327–366. MR 1858538 (2002m:37042)

    Google Scholar 

  25. Carleson L, Gamelin TW (1993) Complex dynamics. Universitext: Tracts in Mathematics. Springer, New York. MR 1230383 (94h:30033)

    Google Scholar 

  26. Chernov N, Markarian R (2006) Chaotic billiards, Mathematical Surveys and Monographs, vol 127. American Mathematical Society, Providence, RI. MR 2229799 (2007f:37050)

    Google Scholar 

  27. Collet P, Eckmann JP (1980) Iterated maps on the interval as dynamical systems, Progress in Physics, vol 1. Birkhäuser, Boston. MR 613981 (82j:58078)

    Google Scholar 

  28. Cornfeld IP, Fomin SV, Sinaĭ YG (1982) Ergodic Theory, Grundlehren der mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol 245. Springer, New York, translated from the Russian by A. B. Sosinskiĭ. MR 832433 (87f:28019)

    Google Scholar 

  29. Coven EM, Hedlund GA (1973) Sequences with minimal block growth. Math Systems Theory 7:138–153. MR 0322838 (48 #1199)

    MathSciNet  MATH  Google Scholar 

  30. del Junco A (1978) A simple measure‐preserving transformation with trivial centralizer. Pacific J Math 79(2):357–362. MR 531323 (80i:28034)

    MathSciNet  Google Scholar 

  31. del Junco A, Rahe M, Swanson L (1980) Chacon’s automorphism has minimal self‐joinings. J Analyse Math 37:276–284. MR 583640 (81j:28027)

    MathSciNet  MATH  Google Scholar 

  32. de Melo W, van Strien S (1993) One‐dimensional dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Results in Mathematics and Related Areas (3)), vol 25. Springer, Berlin. MR 1239171 (95a:58035)

    Google Scholar 

  33. de la Rue T (1993) Entropie d’un système dynamique gaussien: cas d’une action de \( { \textbf{z}(X,\mathcal{B},\mu) d } \). C R Acad Sci Paris Sér I Math 317(2):191–194. MR 1231420 (94c:28022)

    Google Scholar 

  34. Downarowicz T (2005) Survey of odometers and Toeplitz flows. In: Algebraic and topological dynamics. Contemp Math, vol 385. Amer Math Soc, Providence, RI, pp 7–37. MR 2180227 (2006f:37009)

    Google Scholar 

  35. Everett CJ (1946) Representations for real numbers. Bull Amer Math Soc 52:861–869. MR 0018221 (8,259c)

    MathSciNet  MATH  Google Scholar 

  36. Feigenbaum MJ (1978) Quantitative universality for a class of nonlinear transformations. J Statist Phys 19(1):25–52. MR 0501179 (58 #18601)

    MathSciNet  ADS  MATH  Google Scholar 

  37. Field M, Nicol M (2004) Ergodic theory of equivariant diffeomorphisms: Markov partitions and stable ergodicity. Mem Amer Math Soc 169(803):viii+100. MR 2045641 (2005g:37041)

    MathSciNet  Google Scholar 

  38. Frick SB, Petersen K () Random permutations and unique fully supported ergodicity for the Euler adic transformation. Ann Inst H Poincaré Prob Stat. To appear

    Google Scholar 

  39. Furstenberg H (1973) The unique ergodicity of the horocycle flow. In: Recent advances in topological dynamics (Proc Conf, Yale Univ, New Haven, Conn, 1972; in honor of Gustav Arnold Hedlund). Lecture Notes in Math, vol 318. Springer, Berlin, pp 95–115. MR 0393339 (52 #14149)

    Google Scholar 

  40. Furstenberg H (1967) Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation. Math Systems Theory 1:1–49. MR 0213508 (35 #4369)

    MathSciNet  MATH  Google Scholar 

  41. Gallavotti G, Ornstein DS (1974) Billiards and bernoulli schemes. Comm Math Phys 38:83–101. MR 0355003 (50 #7480)

    MathSciNet  ADS  MATH  Google Scholar 

  42. Glasner E (2003) Ergodic Theory via Joinings. Mathematical Surveys and Monographs, vol 101. American Mathematical Society, Providence, RI. MR 1958753 (2004c:37011)

    Google Scholar 

  43. Graczyk J, Światek G (1997) Generic hyperbolicity in the logistic family. Ann Math (2) 146(1):1–52. MR 1469316 (99b:58079)

    Google Scholar 

  44. Grayson M, Pugh C, Shub M (1994) Stably ergodic diffeomorphisms. Ann Math (2) 140(2):295–329. MR 1298715 (95g:58128)

    MathSciNet  Google Scholar 

  45. Guckenheimer J, Holmes P (1990) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Applied Mathematical Sciences, vol 42. Springer, New York, revised and corrected reprint of the 1983 original. MR 1139515 (93e:58046)

    Google Scholar 

  46. Hasselblatt B, Katok A (2003) A First Course in Dynamics. Cambridge University Press, with a panorama of recent developments. MR 1995704 (2004f:37001)

    Google Scholar 

  47. Hayashi S (1997) Connecting invariant manifolds and the solution of the \( { c(X,\mathcal{B},\mu) 1 } \) stability and ω‑stability conjectures for flows. Ann Math (2) 145(1):81–137. MR 1432037 (98b:58096)

    Google Scholar 

  48. Hedlund GA (1934) On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature. Ann Math (2) 35(4):787–808. MR 1503197

    MathSciNet  Google Scholar 

  49. Hopf E (1939) Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung. Ber Verh Sächs Akad Wiss Leipzig 91:261–304. MR 0001464 (1,243a)

    MathSciNet  Google Scholar 

  50. Host B (1995) Nombres normaux, entropie, translations. Israel J Math 91(1-3):419–428. MR 1348326 (96g:11092)

    MathSciNet  MATH  Google Scholar 

  51. Hu H (2004) Decay of correlations for piecewise smooth maps with indifferent fixed points. Ergodic Theory Dynam Systems 24(2):495–524. MR 2054191 (2005a:37064)

    MathSciNet  MATH  Google Scholar 

  52. Jakobson MV (1981) Absolutely continuous invariant measures for one‐parameter families of one‐dimensional maps. Comm Math Phys 81(1):39–88. MR 630331 (83j:58070)

    MathSciNet  ADS  MATH  Google Scholar 

  53. Katok A (1980) Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst Hautes Études Sci Publ Math 51:137–173. MR 573822 (81i:28022)

    MathSciNet  MATH  Google Scholar 

  54. Katok A, Strelcyn JM, Ledrappier F, Przytycki F (1986) Invariant manifolds, entropy and billiards; smooth maps with singularities. Lecture Notes in Mathematics, vol 1222. Springer, Berlin. MR 872698 (88k:58075)

    Google Scholar 

  55. Keane M (1968) Generalized morse sequences. Z Wahrscheinlichkeitstheorie Verw Gebiete 10:335–353. MR 0239047 (39 #406)

    Google Scholar 

  56. Keane M (1977) Non‐ergodic interval exchange transformations. Israel J Math 26(2):188–196. MR 0435353 (55 #8313)

    MathSciNet  MATH  Google Scholar 

  57. Keller G, Nowicki T (1992) Spectral theory, zeta functions and the distribution of periodic points for Collet‐Eckmann maps. Comm Math Phys 149(1):31–69. MR 1182410 (93i:58123)

    MathSciNet  ADS  MATH  Google Scholar 

  58. Kerckhoff S, Masur H, Smillie J (1986) Ergodicity of billiard flows and quadratic differentials. Ann Math (2) 124(2):293–311. MR 855297 (88f:58122)

    MathSciNet  Google Scholar 

  59. Kolmogorov AN (1954) On conservation of conditionally periodic motions for a small change in Hamilton’s function. Dokl Akad Nauk SSSR (NS) 98:527–530. MR 0068687 (16,924c)

    MathSciNet  MATH  Google Scholar 

  60. Krieger W (2000) On subshifts and topological Markov chains. In: Numbers, information and complexity (Bielefeld, 1998). Kluwer, Boston, pp 453–472. MR 1755380 (2001g:37010)

    Google Scholar 

  61. Lagarias JC (1991) The Farey shift. Manuscript

    Google Scholar 

  62. Lagarias JC (1992) Number theory and dynamical systems. In: The unreasonable effectiveness of number theory (Orono, ME, 1991). Proc Sympos Appl Math, vol 46. Amer Math Soc, Providence, RI, pp 35–72. MR 1195841 (93m:11143)

    Google Scholar 

  63. Lazutkin VF (1973) Existence of caustics for the billiard problem in a convex domain. Izv Akad Nauk SSSR Ser Mat 37:186–216. MR 0328219 (48 #6561)

    MathSciNet  MATH  Google Scholar 

  64. Ledrappier F (1984) Propriétés ergodiques des mesures de sinaï. Inst Hautes Études Sci Publ Math 59:163–188. MR 743818 (86f:58092)

    MathSciNet  MATH  Google Scholar 

  65. Lind D, Marcus B (1995) An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge. MR 1369092 (97a:58050)

    MATH  Google Scholar 

  66. Liverani C, Wojtkowski MP (1995) Ergodicity in hamiltonian systems. In: Dynamics reported. Dynam Report Expositions Dynam Systems (N.S.), vol 4. Springer, Berlin, pp 130–202. MR 1346498 (96g:58144)

    Google Scholar 

  67. Liverani C, Saussol B, Vaienti S (1999) A probabilistic approach to intermittency. Ergodic Theory Dynam Systems 19(3):671–685. MR 1695915 (2000d:37029)

    MathSciNet  MATH  Google Scholar 

  68. Lyons R (1988) On measures simultaneously 2- and 3‑invariant. Israel J Math 61(2):219–224. MR 941238 (89e:28031)

    MathSciNet  MATH  Google Scholar 

  69. Mañé R (1987) Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Results in Mathematics and Related Areas (3)), vol 8. Springer, Berlin, translated from the Portuguese by Silvio Levy. MR 889254 (88c:58040)

    Google Scholar 

  70. Mañé R (1988) A proof of the \( { c(X,\mathcal{B},\mu) 1 } \) stability conjecture. Inst Hautes Études Sci Publ Math 66:161–210. MR 932138 (89e:58090)

    Google Scholar 

  71. Manneville P, Pomeau Y (1980) Different ways to turbulence in dissipative dynamical systems. Phys D 1(2):219–226. MR 581352 (81h:58041)

    MathSciNet  Google Scholar 

  72. Marcus B (1975) Unique ergodicity of the horocycle flow: variable negative curvature case. Israel J Math 21(2-3):133–144, Conference on Ergodic Theory and Topological Dynamics (Kibbutz Lavi, 1974). MR 0407902 (53 #11672)

    MathSciNet  MATH  Google Scholar 

  73. Marcus B (1978) The horocycle flow is mixing of all degrees. Invent Math 46(3):201–209. MR 0488168 (58 #7731)

    MathSciNet  ADS  MATH  Google Scholar 

  74. Masur H (1986) Closed trajectories for quadratic differentials with an application to billiards. Duke Math J 53(2):307–314. MR 850537 (87j:30107)

    MathSciNet  MATH  Google Scholar 

  75. Mayer DH (1991) Continued fractions and related transformations. In: Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989). Oxford Sci Publ. Oxford Univ Press, Oxford, pp 175–222. MR 1130177

    Google Scholar 

  76. Méla X, Petersen K (2005) Dynamical properties of the pascal adic transformation. Ergodic Theory Dynam Systems 25(1):227–256. MR 2122921 (2005k:37012)

    Google Scholar 

  77. Melbourne I, Török A (2004) Statistical limit theorems for suspension flows. Israel J Math 144:191–209. MR 2121540 (2006c:37005)

    Google Scholar 

  78. de Melo W (1973) Structural stability of diffeomorphisms on two‐manifolds. Invent Math 21:233–246. MR 0339277 (49 #4037)

    MathSciNet  ADS  MATH  Google Scholar 

  79. Moser J (1962) On invariant curves of area‐preserving mappings of an annulus. Nachr Akad Wiss Göttingen Math-Phys Kl II 1962:1–20. MR 0147741 (26 #5255)

    Google Scholar 

  80. Nadkarni MG (1998) Spectral Theory of Dynamical Systems. Birkhäuser Advanced Texts: Basler Lehrbücher. (Birkhäuser Advanced Texts: Basel Textbooks), Birkhäuser, Basel. MR 1719722 (2001d:37001)

    Google Scholar 

  81. Ornstein D (1970) Bernoulli shifts with the same entropy are isomorphic. Advances in Math 4:337–352. MR 0257322 (41 #1973)

    MathSciNet  MATH  Google Scholar 

  82. Ornstein DS, Weiss B (1973) Geodesic flows are bernoullian. Israel J Math 14:184–198. MR 0325926 (48 #4272)

    MathSciNet  MATH  Google Scholar 

  83. Oseledec VI (1968) A multiplicative ergodic theorem. Characteristic Ljapunov exponents of dynamical systems. Trudy Moskov Mat Obšč 19:179–210. MR 0240280 (39 #1629)

    MathSciNet  Google Scholar 

  84. Parry W (1960) On the β‑expansions of real numbers. Acta Math Acad Sci Hungar 11:401–416. MR 0142719 (26 #288)

    MathSciNet  MATH  Google Scholar 

  85. Parry W (1964) Representations for real numbers. Acta Math Acad Sci Hungar 15:95–105. MR 0166332 (29 #3609)

    MathSciNet  MATH  Google Scholar 

  86. Parry W (1966) Symbolic dynamics and transformations of the unit interval. Trans Amer Math Soc 122:368–378. MR 0197683 (33 #5846)

    MathSciNet  MATH  Google Scholar 

  87. Parry W (1996) Squaring and cubing the circle—rudolph’s theorem. In: Ergodic theory of \( { \textbf{Z}(X,\mathcal{B},\mu) d } \) actions (Warwick, 1993-1994). London Math Soc Lecture Note Ser, vol 228. Cambridge Univ Press, Cambridge, pp 177–183. MR 1411219 (97h:28009)

    Google Scholar 

  88. Parthasarathy KR (2005) Probability Measures on Metric Spaces. AMS Chelsea Publishing, Providence, RI, reprint of the 1967 original. MR 2169627 (2006d:60004)

    MATH  Google Scholar 

  89. Pesin JB (1976) Families of invariant manifolds that correspond to nonzero characteristic exponents. Izv Akad Nauk SSSR Ser Mat 40(6):1332–1379, 1440. MR 0458490 (56 #16690)

    MathSciNet  MATH  Google Scholar 

  90. Pesin JB (1977) Characteristic Ljapunov exponents, and smooth ergodic theory. Uspehi Mat Nauk 32(4 (196)):55–112, 287. MR 0466791 (57 #6667)

    MathSciNet  Google Scholar 

  91. Phillips E, Varadhan S (eds) (1975) Ergodic Theory. Courant Institute of Mathematical Sciences New York University, a seminar held at the Courant Institute of Mathematical Sciences, New York University, New York, 1973–1974; With contributions by S. Varadhan, E. Phillips, S. Alpern, N. Bitzenhofer and R. Adler. MR 0486431 (58 #6177)

    Google Scholar 

  92. Pugh C, Shub M (2004) Stable ergodicity. Bull Amer Math Soc (NS) 41(1):1–41 (electronic), with an appendix by Alexander Starkov. MR 2015448 (2005f:37011)

    MathSciNet  MATH  Google Scholar 

  93. Rényi A (1957) Representations for real numbers and their ergodic properties. Acta Math Acad Sci Hungar 8:477–493. MR 0097374 (20 #3843)

    Google Scholar 

  94. Robbin JW (1971) A structural stability theorem. Ann Math (2) 94:447–493. MR 0287580 (44 #4783)

    MathSciNet  Google Scholar 

  95. Robinson C (1975) Errata to: “structural stability of vector fields” (ann. of math. (2) 99:154–175 (1974)). Ann Math (2) 101:368. MR 0365630 (51 #1882)

    Google Scholar 

  96. Robinson C (1976) Structural stability of \( { c(X,\mathcal{B},\mu){1} } \) diffeomorphisms. J Differential Equations 22(1):28–73. MR 0474411 (57 #14051)

    Google Scholar 

  97. Robinson RC (1973) \( { c(X,\mathcal{B},\mu){r} } \) structural stability implies Kupka-Smale. In: Dynamical systems, (Proc Sympos, Univ Bahia, Salvador, 1971). Academic Press, New York, pp 443–449. MR 0334282 (48 #12601)

    Google Scholar 

  98. Rohlin VA (1952) On the fundamental ideas of measure theory. Amer Math Soc Translation 1952(71):55. MR 0047744 (13,924e)

    MathSciNet  Google Scholar 

  99. Rudolph DJ (1990) Fundamentals of Measurable Dynamics: Ergodic theory on Lebesgue spaces. Oxford Science Publications. The Clarendon Press Oxford University Press, New York. MR 1086631 (92e:28006)

    Google Scholar 

  100. Rudolph DJ (1990) \( { \times 2 } \) and \( { \times 3 } \) invariant measures and entropy. Ergodic Theory Dynam Systems 10(2):395–406. MR 1062766 (91g:28026)

    Google Scholar 

  101. Ruelle D (1976) A measure associated with axiom-a attractors. Amer J Math 98(3):619–654. MR 0415683 (54 #3763)

    MathSciNet  MATH  Google Scholar 

  102. Ruelle D (1978) Thermodynamic formalism: the mathematical structures of classical equilibrium statistical mechanics. Encyclopedia of Mathematics and its Applications, vol 5. Addison‐Wesley Publishing Co, Reading, MA, with a foreword by Giovanni Gallavotti and Gian-Carlo Rota. MR 511655 (80g:82017)

    Google Scholar 

  103. Sarig O (2002) Subexponential decay of correlations. Invent Math 150(3):629–653. MR 1946554 (2004e:37010)

    MathSciNet  ADS  MATH  Google Scholar 

  104. Schweiger F (1995) Ergodic Theory of Fibred Systems and Metric Number Theory. Oxford Science Publications. The Clarendon Press Oxford University Press, New York. MR 1419320 (97h:11083)

    Google Scholar 

  105. Sinaĭ JG (1968) Markov partitions and u‑diffeomorphisms. Funkcional Anal i Priložen 2(1):64–89. MR 0233038 (38 #1361)

    Google Scholar 

  106. Sinaĭ JG (1970) Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Uspehi Mat Nauk 25(2 (152)):141–192. MR 0274721 (43 #481)

    Google Scholar 

  107. Sinaĭ JG (1972) Gibbs measures in ergodic theory. Uspehi Mat Nauk 27(4(166)):21–64. MR 0399421 (53 #3265)

    Google Scholar 

  108. Smale S (1980) The mathematics of time. Essays on dynamical systems, economic processes, and related topics. Springer, New York. MR 607330 (83a:01068)

    MATH  Google Scholar 

  109. Tabachnikov S (2005) Geometry and billiards, Student Mathematical Library, vol 30. American Mathematical Society, Providence, RI. MR 2168892 (2006h:51001)

    Google Scholar 

  110. Thouvenot JP (1995) Some properties and applications of joinings in ergodic theory. In: Ergodic theory and its connections with harmonic analysis (Alexandria, 1993). London Math Soc Lecture Note Ser, vol 205. Cambridge Univ Press, Cambridge, pp 207–235. MR 1325699 (96d:28017)

    Google Scholar 

  111. Vershik AM, Livshits AN (1992) Adic models of ergodic transformations, spectral theory, substitutions, and related topics. In: Representation theory and dynamical systems. Adv Soviet Math, vol 9. Amer Math Soc, Providence, RI, pp 185–204. MR 1166202 (93i:46131)

    Google Scholar 

  112. Vorobets YB, Gal\( { ^\prime } \)perin GA, Stëpin AM (1992) Periodic billiard trajectories in polygons: generation mechanisms. Uspekhi Mat Nauk 47(3(285)):9–74, 207, (Russian with Russian summary), English translation: (1992) Russian Math Surveys 47(3):5–80. MR 1185299 (93h:58088)

    Google Scholar 

  113. Walters P (1982) An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol 79. Springer, New York. MR 648108 (84e:28017)

    Google Scholar 

  114. Young LS (1993) Ergodic theory of chaotic dynamical systems. In: From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990). Springer, New York, pp 201–226. MR 1246120 (94i:58112)

    Google Scholar 

  115. Young LS (1998) Statistical properties of dynamical systems with some hyperbolicity. Ann Math (2) 147(3):585–650. MR 1637655 (99h:58140)

    Google Scholar 

  116. Young LS (1999) Recurrence times and rates of mixing. Israel J Math 110:153–188. MR 1750438 (2001j:37062)

    MathSciNet  MATH  Google Scholar 

  117. Zemljakov AN, Katok AB (1975) Topological transitivity of billiards in polygons. Mat Zametki 18(2):291–300. MR 0399423 (53 #3267)

    MathSciNet  Google Scholar 

Books and Reviews

  1. Baladi V (2000) Positive transfer operators and decay of correlations. Advanced Series in Nonlinear Dynamics, vol 16. World Scientific Publishing Co Inc, River Edge. MR 1793194 (2001k:37035)

    Google Scholar 

  2. Billingsley P (1978) Ergodic Theory and Information. Robert E. Krieger Publishing Co, Huntington, N.Y., pp xiii+194, reprint of the 1965 original. MR 524567 (80b:28017)

    Google Scholar 

  3. Billingsley P (1995) Probability and Measure. Wiley Series in Probability and Mathematical Statistics, 3rd edn. Wiley, New York, pp xiv+593, A Wiley-Interscience Publication. MR 1324786 (95k:60001)

    Google Scholar 

  4. Bonatti C, Díaz LJ, Viana M (2005) Dynamics beyond uniform hyperbolicity: A global geometric and probabilistic perspective; Mathematical Physics, III. In: Encyclopaedia of Mathematical Sciences,vol. 102. Springer, Berlin, pp xviii+384. MR 2105774 (2005g:37001)

    Google Scholar 

  5. Boyarsky A, Góra P (1997) Laws of chaos: Invariant measures and dynamical systems in one dimension. Probability and its Applications. Birkhäuser, Boston. MR 1461536 (99a:58102)

    Google Scholar 

  6. Brin M, Stuck G (2002) Introduction to dynamicalsystems. Cambridge University Press, Cambridge. MR 1963683 (2003m:37001)

    MATH  Google Scholar 

  7. Carleson L, Gamelin TW (1993) Complex dynamics. Universitext: Tracts in Mathematics. Springer, New York. MR 1230383 (94h:30033)

    Google Scholar 

  8. Chernov N, Markarian R (2006) Chaotic billiards, Mathematical Surveys and Monographs, vol 127. American Mathematical Society, Providence, RI. MR 2229799 (2007f:37050)

    Google Scholar 

  9. Collet P, Eckmann JP (1980) Iterated maps on the interval as dynamical systems, Progress in Physics, vol 1. Birkhäuser, Boston. MR 613981 (82j:58078)

    Google Scholar 

  10. Cornfeld IP, Fomin SV, Sinaĭ YG (1982) Ergodic Theory, Grundlehren der mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol 245. Springer, New York, translated from the Russian by A. B. Sosinskiĭ. MR 832433 (87f:28019)

    Google Scholar 

  11. Denker M, Grillenberger C, Sigmund K (1976) Ergodic Theory on Compact Spaces. Lecture Notes in Mathematics, vol 527. Springer, Berlin. MR 0457675 (56 #15879)

    Google Scholar 

  12. Friedman NA (1970) Introduction to Ergodic Theory. Van Nostrand Reinhold Mathematical Studies, No 29. Van Nostrand Reinhold Co, New York. MR 0435350 (55 #8310)

    Google Scholar 

  13. Glasner E (2003) Ergodic Theory via Joinings, Mathematical Surveys and Monographs, vol 101. American Mathematical Society, Providence, RI. MR 1958753 (2004c:37011)

    Google Scholar 

  14. Halmos PR (1960) Lectures on Ergodic Theory. Chelsea Publishing Co, New York. MR 0111817 (22 #2677)

    MATH  Google Scholar 

  15. Hasselblatt B, Katok A (2003) A First Course in Dynamics: With a panorama of recent developments. Cambridge University Press, Cambridge. MR 1995704 (2004f:37001)

    Google Scholar 

  16. Hopf E (1937) Ergodentheorie, 1st edn. Ergebnisse der Mathematik und ihrer Grenzgebiete; 5. Bd, 2, J. Springer, Berlin

    Google Scholar 

  17. Jacobs K (1965) Einige neuere Ergebnisse der Ergodentheorie. Jber Deutsch Math‐Verein 67(Abt 1):143–182. MR 0186789 (32 #4244)

    MathSciNet  MATH  Google Scholar 

  18. Keller G (1998) Equilibrium States in Ergodic Theory. In: London Mathematical Society Student Texts, vol 42. Cambridge University Press, Cambridge, pp x+178. MR 1618769 (99e:28022)

    Google Scholar 

  19. Mañé R (1987) Ergodic theory and differentiable dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Results in Mathematics and Related Areas (3)), vol 8. Springer, Berlin, translated from the Portuguese by Silvio Levy. MR 889254 (88c:58040)

    Google Scholar 

  20. Nadkarni MG (1998) Spectral Theory of Dynamical Systems. Birkhäuser Advanced Texts: Basler Lehrbücher. (Birkhäuser Advanced Texts: Basel Textbooks), Birkhäuser, Basel. MR 1719722 (2001d:37001)

    Google Scholar 

  21. Katok A, Hasselblatt B (1995) Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, vol 54. Cambridge University Press, Cambridge, With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374 (96c:58055)

    Google Scholar 

  22. Parry W, Pollicott M (1990) Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque (187-188):268. MR 1085356 (92f:58141)

    Google Scholar 

  23. Ornstein DS, Rudolph DJ, Weiss B (1982) Equivalence of measure preserving transformations. Mem Amer Math Soc 37(262):xii+116. MR 653094 (85e:28026)

    Google Scholar 

  24. Petersen K (1989) Ergodic Theory, Cambridge Studies in Advanced Mathematics, vol 2. Cambridge University Press, Cambridge. corrected reprint of the 1983 original. MR 1073173 (92c:28010)

    Google Scholar 

  25. Royden HL (1988) Real Analysis, 3rd edn. Macmillan Publishing Company, New York. MR 1013117 (90g:00004)

    MATH  Google Scholar 

  26. Rudolph DJ (1990) Fundamentals of Measurable Dynamics: Ergodic theory on Lebesgue spaces. Oxford Science Publications. The Clarendon Press Oxford University Press, New York. MR 1086631 (92e:28006)

    Google Scholar 

  27. Schweiger F (1995) Ergodic Theory of Fibred Systems and Metric Number Theory. Oxford Science Publications. The Clarendon Press Oxford University Press, New York. MR 1419320 (97h:11083)

    Google Scholar 

  28. Thouvenot JP (1995) Some properties and applications of joinings in ergodic theory. In: Ergodic theory and its connections with harmonic analysis (Alexandria, 1993). London Math Soc Lecture Note Ser, vol 205. Cambridge Univ Press, Cambridge, pp 207–235. MR 1325699 (96d:28017)

    Google Scholar 

  29. Walters P (1982) An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol 79. Springer, New York. MR 648108 (84e:28017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Nicol, M., Petersen, K. (2009). Ergodic Theory: Basic Examples and Constructions. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_177

Download citation

Publish with us

Policies and ethics